Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-induced superconductivity under high pressure

09.05.2018

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological application is hindered by their low operating temperature, which in the best case can reach -70 degrees Celsius.


Light-induced superconductivity in K3C60 was investigated at high pressure in a Diamond Anvil Cell.

Jörg Harms, MPSD

Researchers of the group of Prof. A. Cavalleri at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg have routinely used intense laser pulses to stimulate different classes of superconducting materials. Under specific conditions, they have detected evidences of superconductivity at unprecedented high temperatures, although this state persisted very shortly, just for a small fraction of a second.

An important example is that of K3C60, an organic molecular solid formed by weakly-interacting C60“buckyball” molecules (60 carbon atoms bond in the shape of a football), which is superconducting at equilibrium below a critical temperature of -250 degrees Celsius.

In 2016, Mitrano and coworkers at the MPSD discovered that tailored laser pulses, tuned to induce vibrations of the C60 molecules, can induce a short-lived, highly conducting state with properties identical to those of a superconductor up to a temperature of at least -170 degrees Celsius - far higher than the equilibrium critical temperature.

In their most recent investigation, A. Cantaluppi, M. Buzzi and colleagues at MPSD in Hamburg went a decisive step further by monitoring the evolution of the light-induced state in K3C60 once external pressure was applied by a diamond anvil cell. At equilibrium, when pressure is applied, the C60 molecules in the potassium-doped fulleride are held closer to each other. This weakens the equilibrium superconducting state and significantly reduces the critical temperature.

“Understanding whether the light-induced state found in K3C60 responds in the same way as the equilibrium superconductor is a key step towards uniquely determining the nature of this state and can provide new hints to unveil the physical mechanism behind light-induced high-temperature superconductivity”, says Alice Cantaluppi.

K3C60 was systematically investigated, in the presence of photo-excitation, for pressures varying from ambient conditions up to 2.5 GPa, which corresponds to 25,000 times the atmospheric pressure. The authors measured a strong reduction in photo-conductivity with increasing pressure.

Such behaviour is very different from that found in conventional metals, while it is fully compatible with the phenomenology of a superconductor, thus standing for a first unambiguous interpretation of the light-induced state in K3C60 as a transient superconducting phase.

“Importantly”, says Michele Buzzi, “we observed that for stronger optical excitations, we can obtain an incipient, transient superconductor at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature.”

A universal picture able to describe the physical mechanism behind the phenomenon of light-induced high-temperature superconductivity in K3C60 is still missing and the ultimate goal of obtaining a stable room-temperature superconductor is not around the corner yet. Nonetheless, the novel approach introduced by the MPSD team, which combines optical excitation with the application of other external stimuli, as external pressure or magnetic fields, shall pave the way in this direction, allowing for the generation, control, and understanding of new phenomena in complex materials.

This work was supported by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC), the Hamburg Centre for Ultrafast Imaging (CUI), and the priority program SFB925 of the Deutsche Forschungsgemeinschaft. The experiments were performed in the laboratories of the Center for Free-Electron Laser Science (CFEL), a joint enterprise of DESY, the Max Planck Society, and the University of Hamburg. The research was carried out in close collaboration with scientists of the University of Parma and of the ELETTRA Synchrotron Facility, Trieste, Italy.

Further information available from Jenny Witt, MPSD PR officer
Email: jenny.witt@mpsd.mpg.de
Tel: +49 40 8998 6593

Weitere Informationen:

https://www.nature.com/articles/s41567-018-0134-8
http://www.mpsd.mpg.de

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
22.10.2019 | Tata Institute of Fundamental Research

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>