Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New light at the end of the tunnel

An international team of scientists successfully concentrated the energy of infrared laser pulses using a nano funnel enabling them to generate extreme ultraviolet light pulses, which repeated 75 million times per second.

Who wants to decant liquids in the kitchen without spilling knows to value a funnel. Funnels are not only useful tools in the kitchen. Light can also be efficiently concentrated with funnels. In this case, the funnels have to be about 10.000-times smaller.

Figure caption: Scheme of the generation of EUV light by the 3D nano funnel. The infrared light (shown in red) is incident at the entrance of the Xe (green depicted particles) filled nano funnel (shown as a half-cut). The surface plasmon polariton fields (wave pattern) concentrate near the tip of the structure. Extreme ultraviolet light (shown in purple) is generated in the enhanced fields in Xe and exits the funnel through the small opening, while the infrared light cannot penetrate the small opening and is back-reflected. Picture: Christian Hackenberger

An international team of scientists from the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon (South Korea), the Max Planck Institute of Quantum Optics (MPQ) in Garching (Germany), and the Georgia State University (GSU) in Atlanta (USA) has now managed to concentrate the energy of infrared light pulses with a nano funnel and use the concentrated energy to generate extreme ultraviolet light flashes. These flashes, which repeated 75 million times per second, lasted only a few femtoseconds. The new technology can help in the future to measure the movement of electrons with the highest spatial and temporal resolution (Nature Photonics, 16.10.2011).

Light is convertible. The wavelengths composing the light can change through interactions with matter, where both the type of material and shape of the material are important for the frequency conversion. An international team of scientists from the Korea Advanced Institute of Science and Technology (KAIST), the Max Planck Institute of Quantum Optics (MPQ), and the Georgia State University (GSU) has now modified light waves with a nano funnel made out of silver. The scientists converted femtosecond laser pulses in the infrared spectral range to femtosecond light flashes in the extreme ultraviolet (EUV). Ultrashort, pulsed EUV light is used in laser physics to explore the inside of atoms and molecules. A femtosecond lasts only a millionth of a billionth of a second.

Light in the infrared (IR) can be converted to the EUV by a process known as high-harmonic generation, whereby the atoms are exposed to a strong electric field from the IR laser pulses. These fields have to be as strong as the fields holding the atom together. With these fields electrons can be extracted from the atoms and accelerated with full force back onto the atoms. Upon impact highly energetic radiation in the EUV is generated.

To reach the necessary strong electric fields for the production of EUV light, the team of scientists has now combined this scheme with a nano funnel in order to concentrate the electric field of the light. With their new technology, they were able to create a powerful EUV light source with wavelengths down to 20 nanometers. The light source exhibits a so far unreached high repetition rate: the few femtoseconds lasting EUV light flashes are repeated 75 million times per second.

The core of the experiment was a small, only a few micrometers long, slightly elliptical funnel made out of silver and filled with xenon gas (see Fig. 1). The tip of the funnel was only ca. 100 nanometers wide. The infrared light pulses were sent into the funnel entrance where they travel through towards the small exit. The electromagnetic forces of the light result in density fluctuations of the electrons on the inside of the funnel. Here, a small patch of the metal surface was positively charged, the next one negative and so on, resulting in new electromagnetic fields on the inside of the funnel, which are called surface plasmon polaritons. The surface plasmon polaritons travel towards the tip of the funnel, where the conical shape of the funnel results in a concentration of their fields. “The field on the inside of the funnel can become a few hundred times stronger than the field of the incident infrared light. This enhanced field results in the generation of EUV light in the Xe gas.”, explains Prof. Mark Stockman from GSU.

The nano funnel has yet another function. Its small opening at the exit acts as “doorman” for light wavelengths. Not every opening is passable for light. If the opening is smaller than half of a wavelength, the other side remains dark. The 100 nanometer large opening of the funnel did not allow the infrared light at 800 nm to pass. The generated EUV pulses with wavelengths down to 20 nanometers passed, however, without problems. “The funnel acts as an efficient wavelength filter: at the small opening only EUV light comes out.”, explains Prof. Seung-Woo Kim from KAIST, where the experiments were conducted.

“Due to their short wavelength and potentially short pulse duration reaching into the attosecond domain, extreme ultraviolet light pulses are an important tool for the exploration of electron dynamics in atoms, molecules and solids”, explains Seung-Woo Kim. Electrons are extremely fast, moving on attosecond timescales (an attosecond is a billionth of a billionth of a second). In order to capture a moving electron, light flashes are needed, which are shorter than the timescale of the motion. Attosecond light flashes have become a familiar tool in the exploration of electron motion. With the conventional techniques, they can only be repeated a few thousand times per second. This can change with the nano funnel. “We assume that the few femtosecond light flashes consist of trains of attosecond pulses”, argues Matthias Kling, group leader at MPQ. “With such pulse trains, we should be able to conduct experiments with attosecond time resolution at very high repetition rate.”

The repetition rate is important for e.g. the application of EUV pulses in electron spectroscopy on surfaces. Electrons repel each other by Coulomb forces. Therefore, it may be necessary to restrict the experimental conditions such that only a single electron is generated per laser shot. With low repetition rates, long data acquisition times would be required in order to achieve sufficient experimental resolution. “In order to conduct experiments with high spatial and temporal resolution within a sufficiently short time, a high repetition rate EUV source is needed”, explains Kling. The novel combination of laser technology and nanotechnology can help in the future to record movies of ultrafast electron motion on surfaces with so far unreached temporal and spatial resolution in the attosecond-nanometer domain. [Thorsten Naeser]

In-Yong Park, Seungchul Kim, Joonhee Choi, Dong-Hyub Lee, Young-Jin Kim, Matthias F. Kling, Mark I. Stockman & Seung-Woo Kim
Plasmonic generation of ultrashort extreme-ultraviolet light pulses
Nature Photonics, 16 October 2011, Doi: 10.1038/NPHOTON.2011.258
Further information on attosecond physics:
Contact information:
Prof. Seung-Woo Kim
Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology
Science Town, Daejeon 305-701, South Korea
Phone: +82-42-869-3001, 3217
Fax: +82-42-869-3210
Prof. Dr. Matthias Kling
Max Planck Institute of Quantum Optics
Max Planck Research Group „Attosecond Imaging“
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49-89-32905-234
Fax: +49-89-32905-649
Prof. Mark Stockman
Department of Physics and Astronomy
Georgia State University
29 Peachtree Center Avenue, Science Annex, Suite 400
Atlanta, GA 30302, USA
Phone: +1-678-457-4739
Fax: +1-404-413-6025
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>