Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light driving light: how an optical transistor operates

11.10.2011
The transistor is one of the most influential inventions of the 20th century.

Its crucial function is to drive electrical signals utilising electrical signals in television sets, telephones, PCs and other devices. The smaller the circuits with which the signals are conducted, the faster the data processing.

At the University of Bayreuth, a research team centred around Prof. Dr. Jürgen Köhler, Dr. Martti Pärs and Prof. Dr. Mukundan Thelakkat has now demonstrated the amplifying function of an optical transistor. The point: in this transistor, light substitutes electricity. Light signals are driven by light signals.

In the recent online edition of the journal "Angewandte Chemie International Edition", the Bayreuth scientists introduce their discovery. Dr. Martti Pärs, a young physicist, made a particularly noteworthy contribution to the research. The results that have now been published evolved from the close co-operation between Experimental Physics and Macromolecular Chemistry within the Bayreuth campus. The results are the foundation of a completely new generation of transistors. The DFG supports the research in this area within the framework of the research training group "Photophysics of synthetic and biological multichromophor systems".

Two molecules in the team:
one light-driven switch and a strongly illuminating partner
The conceptual model of an optical transistor used in Bayreuth is simple. Two molecules are chemically bound. Using light signals with varying wavelengths, one of the two molecules is alternately brought into a state A or B. The molecule thereby reacts like a switch, alternating between two contrasting states. Depending on whether this light-driven molecular switch is in state A or B, the molecule bound to it emits a weak or strong light signal: light driving light. During this process, a considerable amplification effect evolves as a small light signal is sufficient to bring the molecular switch into a condition whereby the partner molecule strongly fluoresces.
Principal benefits:
highest efficiency within a tiny space
A transistor functioning as described above provides considerable benefits compared to conventional transistors: the latter cannot be optionally reduced in size due to physical reasons. All endeavours to develop the smallest possible circuit for the transport of electrical signals are naturally constrained. However the driving of light signals utilising light signals can be realised at a molecular level as the Bayreuth scientists have now demonstrated. In theory, optical transistors may already exist at the molecular scale. They are innately smaller and therefore faster than electrical transistors.

Another benefit: several optical "mini transistors" can be assembled to become a larger and even more powerful transistor because light signals, as opposed to electrical signals, do not interfere with each other. Therefore a multitude of data is processed simultaneously within a tiny space. Finally, any optical transistor regardless of size is superior relating to one aspect: all signals are processed at the speed of light – to be faster is not possible.

Physical details:
the interior of an optical transistor
The switch molecule used in Bayreuth is dithienylcyclopentene (DCP). In the centre of the symmetrical molecule is a carbon ring. The closed ring is opened as soon as it is hit by an ultra-violet ray of light (280 - 310 nm). The open ring is closed as soon as it is exposed to a visible coloured ray of light (500 - 650 nm). DCP is termed in research a photochrome / photoswitch molecule because it alternates, depending upon the light ray’s wavelength, between the two structures.

At the opposite ends of the DCP molecules, the Bayreuth researchers have attached two organic chromophores, belonging to the perylene bisimides (PBI) group. PBI molecules are known for their ability to fluoresce strongly. This is always the case when a PBI molecule absorbs light energy and emits it.

A PBI molecule that is attached like an arm to a DCP molecule fluoresces with varying intensity – depending on whether the ring in the molecular switch is open or closed. When it is closed, the DCP is at a relatively low energy level. Therefore the PBI transfers the greatest part of its absorbed light energy to the DCP. The DCP dissipates light energy without fluorescence. In this case, the PBI weakly fluoresces. However, when the ring in the DCP is open, we observe the opposite. The DCP is at such a high energy level that the PBI is unable to pass on light energy to the DCP. Instead, it fully emits the absorbed light energy. The PBI is strongly fluorescent.

Further research challenges

Based on the above research results, a future vision of a new generation of transistors has emerged. For this vision to be realised one day, further research is necessary. For instance, it seems as if the fluorescent PBI molecules fade during longer periods of time. Consequently, their illumination power weakens. It is worthwhile to examine this effect more closely. A further observation of test conditions used so far is that it takes a relatively long period of time for the rings to open and close for a large number of DCP molecules. As a result, the gaps between the light signals driven by this process are rather large. The Bayreuth research team is therefore striving for a solution in order to minimise these periods of time.

Publication:

Martti Pärs, Christiane C. Hofmann, Katja Willinger, Peter Bauer,
Mukundan Thelakkat, and Jürgen Köhler,
An Organic Optical Transistor Operated under Ambient Conditions,
in: Angewandte Chemie International Edition 2011, 50,
Article first published online: 5 Oct 2011
DOI-Bookmark: 10.1002/anie.201104193
Contact for further information:
Prof. Dr. Jürgen Köhler
Experimental Physics IV
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-4000 and 55-4001
Email: Juergen.Koehler@uni-bayreuth.de
Dr. Martti Pärs
Experimental Physics IV
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-4003
Email: Martti.Paers@uni-bayreuth.de
Prof. Dr. Mukundan Thelakkat
Applied Functional Polymers
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-3108
Email: Mukundan.Thelakkat@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>