Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light bursts out of a flying mirror

24.04.2013
An international team of researchers succeeds in generating flashes of extreme ultraviolet radiation via the reflection from a mirror that moves close to the speed of light.

A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bursts of laser-like radiation in the short wavelength range via reflection.


A laser pulse (red, bottom), liberates electrons (green) from the carbon atoms of a nanometer-thin foil and accelerates them to close to the speed of light. An infrared light pulse impinges on the electron layer from the opposite direction and reflects off the electron mirror as a light burst in the extreme ultraviolet with a duration of only a few hundred attoseconds. Picture: Thorsten Naeser

A team of physicists from the Max-Planck-Institute of Quantum Optics (MPQ) in Garching, the Ludwig-Maximilians-Universität (LMU) München, the Queens University Belfast (QUB) and the Rutherford Appleton Laboratory (RAL) near Oxford created such a mirror in a recent experiment. The scientists used an intense laser pulse to accelerate a dense sheet of electrons from a nanometre-thin foil to close to the speed of light and reflected a counter-propagating laser pulse from this relativistic mirror.

With this experiment, the physicists managed to carry out a Gedankenexperiment (thought experiment) formulated in 1905 by Albert Einstein stating that the reflection from a mirror moving close to the speed of light could in principle result in bright light pulses in the short wavelength range. The researchers report on their results in Nature Communications, 23. April, 2013.

In everyday life, reflections of light are usually observed from surfaces that are at rest such as the reflection from a piece of glass or a smooth surface of water. But, what happens if one creates a mirror moving incredibly fast, close to the speed of light? This question was answered more than a century ago by Albert Einsteins in 1905 in his theory of special relativity. Now, an international team of researchers investigated that question in an experiment.

In the experiment conducted at the Rutherford Appleton Laboratory near Oxford the physicists irradiated a nanometre-thin, freestanding foil with a 50 femtosecond short, ultra-intense laser pulse (one femtosecond is a millionth of a billionth of a second). The impinging laser pulse liberated electrons from the carbon atoms of the foil and rapidly accelerated to close to the speed of light in less than a micrometer forming a dense sheet of electrons capable of acting as a mirror. “This mirror structure is stable for only a few femtoseconds“, explains Daniel Kiefer, who wrote his Dissertation on this topic. Within this extremely short life time the scientists shot a secondary laser pulse with a wavelength in the near infrared (800 nm) and a pulse duration of several femtoseconds from the opposite direction on the generated relativistic mirror structure.

In stark contrast to a mirror at rest, light reflected from a mirror that is moving is changed in its colour (that is in its wavelength) as the reflected photons gain momentum from the mirror. This process is very similar to a ball that bounces off a racket and thereby accelerates to higher speed. However, instead of moving faster (photons already travel at the speed of light), the reflected light is shifted in its frequency. This phenomenon is very similar to the Dopplereffect observed from an ambulance siren, which sounds higher (louder) or deeper (quieter) depending on whether the ambulance is moving towards or away from the observer. In the experiment, the incredibly high velocity of the electron mirror gave rise to a change in frequency upon reflection from the near infrared to the extreme ultraviolet up to a wavelength of 60 to 80 nanometre. Moreoever, the time duration of the reflected pulses was on the order of a few hundred attoseconds only (one attosecond is a billionth of a billionth of a second).

This experiment not only supports Albert Einstein’s theory of special relativity, but in fact paves the way for a new method to generate intense, attosecond short flashes of light. Those pulses would allow the electron motion in atoms to be resolved thus giving deep insight into elementary processes in nature, which are so far largely unexplored.

For Prof. Schreiber and his group at the LMU, this is only the very beginning. Our laser systems will advance in the future delivering even more powerful pulses with higher repetition rate and shorter pulse duration. This scheme will benefit strongly from those developments in laser technology and thus may enable the generation of laser-like radiation with even higher intensity and shorter wavelength ideal to explore the microcosm. “The relativistic mirror has high potential in the next years“, Schreiber concludes. Thorsten Naeser
Publication:
D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. S. Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf & B. Dromey
Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.
Nature Communications, DOI: 10.1038/ncomms2775, 23. April 2013.

For more information please contact:

Dr. Daniel Kiefer
Ludwig-Maximilians-Universität München
Fakultät für Physik, Am Coulombwall 1
85748 Garching
Phone: +49 (0)89 / 289 -540 23
E-mail: daniel.kiefer@mpq.mpg.de

Prof. Dr. Jörg Schreiber
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 289 -540 25
E-mail: joerg.schreiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics, Garching
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>