LHC Proton Run for 2011 Reaches Successful Conclusion

At the beginning of the year’s run, the objective for the LHC was to deliver a quantity of data known to physicists as one inverse femtobarn during the course of 2011. The first inverse femtobarn came on 17 June, setting the experiments up well for the major physics conferences of the summer and requiring the 2011 data objective to be revised upwards to five inverse femtobarns. That milestone was passed by 18 October, with the grand total for the year being almost six inverse femtobarns delivered to each of the two general-purpose experiments ATLAS and CMS.

“At the end of this year’s proton running, the LHC is reaching cruising speed,” said CERN*’s Director for Accelerators and Technology, Steve Myers. “To put things in context, the present data production rate is a factor of 4 million higher than in the first run in 2010 and a factor of 30 higher than at the beginning of 2011.”

Physics highlights from this year’s proton running include closing down the space available for the long sought Higgs and supersymmetric particles to hide in, putting the Standard Model of particle physics through increasingly gruelling tests, and advancing our understanding of the primordial universe.

“It has been a remarkable and exciting year for the whole LHC scientific community, in particular for our students and post-docs from all over the world. We have made a huge number of measurements of the Standard Model and accessed unexplored territory in searches for new physics. In particular, we have constrained the Higgs particle to the light end of its possible mass range, if it exists at all,” said ATLAS Spokesperson Fabiola Gianotti. “This is where both theory and experimental data expected it would be, but it’s the hardest mass range to study.”

“Looking back at this fantastic year I have the impression of living in a sort of a dream,” said CMS Spokesperson Guido Tonelli. “We have produced tens of new measurements and constrained significantly the space available for models of new physics and the best is still to come. As we speak hundreds of young scientists are still analysing the huge amount of data accumulated so far; we’ll soon have new results and, maybe, something important to say on the Standard Model Higgs Boson.”

“We’ve got from the LHC the amount of data we dreamt of at the beginning of the year and our results are putting the Standard Model of particle physics through a very tough test,” said LHCb Spokesperson Pierluigi Campana. “So far, it has come through with flying colours, but thanks to the great performance of the LHC, we are reaching levels of sensitivity where we can see beyond the Standard Model. The researchers, especially the young ones, are experiencing great excitement, looking forward to new physics.”

Over the coming days and weeks, the LHC experiments will be analysing the full 2011 data set to home in further on new physics. However, while it is possible that new physics may emerge, it is equally likely that the full 10 inverse femtobarns initially foreseen for 2011 and 2012 will be required.

As in 2010, the LHC is now being prepared for four weeks of lead-ion running, but in a new development this year, the world’s largest particle accelerator will also attempt to demonstrate that large can also be agile by colliding protons with lead ions in two dedicated periods of machine development. If successful, these tests will lead to a new strand of LHC operation, using protons to probe the internal structure of the much more massive lead ions.

This is important for the lead-ion programme, whose goal is to study quark-gluon plasma, the primordial soup of particles from which the ordinary matter of today’s visible universe evolved.

“Smashing lead ions together allows us to produce and study tiny pieces of primordial soup,” said ALICE Spokesperson Paolo Giubellino, “but as any good cook will tell you, to understand a recipe fully, it’s vital to understand the ingredients, and in the case of quark-gluon plasma, this is what proton-lead ion collisions could bring.”

Follow CERN at:
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel is an Associate Member in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Media Contact

CERN Press Office Newswise Science News

More Information:

http://www.cern.ch

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors