Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers measure jet disintegration

19.04.2017

Planar laser induced fluorescence uncovers characteristics of fluid behavior important to jet propulsion and medicine

There are many processes, such as propulsion, in which fluid in a supercritical state, where the temperature and pressure put a substance beyond a distinguishable liquid or gas phase, is injected in an environment of supercritical thermodynamic conditions. Under these conditions, mixing and interaction dynamics do not behave as they would in their well-defined liquid or gas phases.


Shadowgraph images with PLIF density gradient maps of a subcritical injection into an environment of subcritical conditions compared with the two imaging results for injection with all conditions supercritical.

Credit: DeSouza and Segal

Rocket engines, gas turbines and diesel engines experience conditions in their combustion chamber that exceed the critical conditions of their fuel, and supercritical finely atomized sprays are used to coat tablets in the production of medicines. In both cases, understanding the precise dynamics of how the fluid breaks up and disperses can lead to fundamental improvements in the ways such systems are built.

The study of jet disintegration in particular focuses on fuel breakup and mixing within the combustion chamber of propulsion devices. A team of researchers at the University of Florida applied spectroscopic diagnostics techniques to learn more about the fundamentals of sub- and supercritical jet disintegration, and reports their new findings this week in the journal Physics of Fluids, by AIP Publishing.

"The Planar Laser Induced Fluorescence (PLIF) technique and the process of correcting for absorption effects is a tool that is unique to the Combustion and Propulsion Laboratory," said Shaun DeSouza, a researcher at the University of Florida and lead author of the publication. "This method provides quantitative data for comparison with the qualitative data produced by the shadowgraph technique." While imaging studies of jets have been performed by many different research institutions, there is limited quantitative density data reported in these studies.

To get that quantitative data, DeSouza and his collaborator ran 48 tests of jets injected from a single orifice into a chamber with one of a range of sub- to supercritical temperature and pressure combinations. They used a fluid called fluoroketone in these tests because of its low critical temperature and pressure, characteristics governing the supercritical behavior of interest, as well as its distinct spectral features well suited to PLIF detection.

The current study of single orifice jets injected into a chamber of sub- to supercritical temperatures and pressures was focused on the effect of the chamber-to-injectant density ratio on the jet disintegration with 48 tests run over an extensive density ratio range. For these tests, researchers used fluoroketone as the working fluid because it has a comparatively low critical temperature and pressure and a strong absorption in the near ultraviolet range making it a good choice for shadowgraph and PLIF visualization.

The results of the study demonstrated the accuracy of PLIF, imaging single planes of the flow field through the center of the jet, leading to noticeable differences in the measured spreading angle compared to shadowgraphy. Unlike shadowgraphy, which integratively images the entire jet, PLIF provides more detailed density information that illuminates features shadowgraphy can't detect.

Each imaging technique offers complementary advantages, with PLIF providing quantitative density results and shadowgraphy providing very detailed flow visualization. While the shadowgraph data agreed with previous visualization studies, the PLIF results that provided quantitative measurement of central jet plane density and density gradients offered new and differing results.

The results also revealed trends key to understanding and improving applications like jet propulsion, such as an increase in normalized drop diameter and a decrease in droplet population as chamber temperatures increased. According to the work, however, both droplet size and distribution were independent of chamber pressure.

"The next step for this line of research is to expand the thermodynamic conditions explored and to improve imaging hardware to gain a better understanding under a larger variety of conditions," said DeSouza.

###

The article, "Sub-and supercritical jet disintegration," is authored by Shaun DeSouza and Corin Segal. The article will appear in Physics of Fluids April 18, 2017 (DOI: 10.1063/1.4979486). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4979486.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>