Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser for rocket ignition: Carinthian research centre wins contract for space research

03.11.2015

Following successful bench testing, CTR Carinthian Tech Research is working with Airbus Safran Launchers on a laser ignition system for use in space. The laser ignition system could be used in the Ariane 6 launch vehicle currently under development.

The European Space Agency (ESA) has awarded the Carinthian research centre CTR in cooperation with the German-French company Airbus Safran Launchers GmbH the contract to further develop CTR’s HiPoLas® laser ignition technology for launcher drive systems.


Ariane 6 – here in a computer simulation – is scheduled for use as ESA’s new rocket launcher in 2020.

© ESA/Airbus


The CTR research centre’s laser ignition system will be integrated in a combustion chamber for cryogenic fuels and rendered fit for space.

© CTR

In previous projects with research carried out on test benches at the German Aerospace Centre (DLR), the CTR team already proved highly successfully that the HiPoLas® laser system is suitable for igniting rocket engines. What the new research contract involves is making the system fit for space and thus helping to develop a new generation of European launch vehicles. The research contract has a volume of around 700 thousand euros.

SYSTEM INTEGRATION FIT FOR SPACE

“For us this is unique recognition of the research and development work we have been doing over the past few years. In close cooperation with our partners we have adapted the HiPoLas® laser ignition system many times to various different piston engines for cars and to deliver power for turbines in planes and most recently for engines in satellites and launchers.

The system has also successfully undergone extensive testing. We now intend to integrate the ignition system in a combustion chamber for cryogenic fuels and adapt it to the extreme demands required for subsequent use in space,” says CTR project manager Gerhard Kroupa. This means the materials, components and the complete system including electronics have to meet the complex technical specifications and high quality standards for space travel.

Given the extreme mechanical loads during launch and the very high temperatures and pressures in the combustion chamber, great demands are placed on the system’s robustness. In addition to durability, the researchers also aim to improve cost efficiency over conventional ignition systems.

Depending on the results of the development project, the laser ignition system could also be taken into consideration in ongoing development of the Ariane 6 launcher. Scheduled for 2020, Ariane 6’s maiden flight will, according to ESA, continue to secure “Europe’s access to space”.

MINITURISED LASER IGNITION SYSTEM

CTR researches into compact, diode-pumped solid-state lasers and ignition systems as well as their integration in various industrial applications. Miniaturising the laser source, which does not require any adjustable elements at all and can therefore withstand extreme temperatures and vibrations, has several advantages: a high degree of flexibility regarding the position of the ignition plasma inside the combustion chamber and a much higher pulse power compared with electrical ignition systems enable more reliable ignition even with complex mixture ratios and high fuel velocities. In addition to successful trials in car and stationary large gas engines, the laser source has also been tested for aviation use in jet engines.

ABOUT CTR

As a research centre for smart sensors and system integration, CTR is one of a few non-university research facilities in Austria. Its mission and goal is to develop advanced products and processes based on integrated sensors, micro and nano systems. Established in 1997, CTR conducts research in regional, national and international R&D projects, is a member of Forschung Austria and has filed countless patents with partners in science and industry. CTR is part of Austria’s COMET research programme with the ASSIC centre of excellence - Austrian Smart Systems Integration Research Center.

Weitere Informationen:

http://www.ctr.at/en/newspressvideos/press-releases.html

Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>