Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser for rocket ignition: Carinthian research centre wins contract for space research

03.11.2015

Following successful bench testing, CTR Carinthian Tech Research is working with Airbus Safran Launchers on a laser ignition system for use in space. The laser ignition system could be used in the Ariane 6 launch vehicle currently under development.

The European Space Agency (ESA) has awarded the Carinthian research centre CTR in cooperation with the German-French company Airbus Safran Launchers GmbH the contract to further develop CTR’s HiPoLas® laser ignition technology for launcher drive systems.


Ariane 6 – here in a computer simulation – is scheduled for use as ESA’s new rocket launcher in 2020.

© ESA/Airbus


The CTR research centre’s laser ignition system will be integrated in a combustion chamber for cryogenic fuels and rendered fit for space.

© CTR

In previous projects with research carried out on test benches at the German Aerospace Centre (DLR), the CTR team already proved highly successfully that the HiPoLas® laser system is suitable for igniting rocket engines. What the new research contract involves is making the system fit for space and thus helping to develop a new generation of European launch vehicles. The research contract has a volume of around 700 thousand euros.

SYSTEM INTEGRATION FIT FOR SPACE

“For us this is unique recognition of the research and development work we have been doing over the past few years. In close cooperation with our partners we have adapted the HiPoLas® laser ignition system many times to various different piston engines for cars and to deliver power for turbines in planes and most recently for engines in satellites and launchers.

The system has also successfully undergone extensive testing. We now intend to integrate the ignition system in a combustion chamber for cryogenic fuels and adapt it to the extreme demands required for subsequent use in space,” says CTR project manager Gerhard Kroupa. This means the materials, components and the complete system including electronics have to meet the complex technical specifications and high quality standards for space travel.

Given the extreme mechanical loads during launch and the very high temperatures and pressures in the combustion chamber, great demands are placed on the system’s robustness. In addition to durability, the researchers also aim to improve cost efficiency over conventional ignition systems.

Depending on the results of the development project, the laser ignition system could also be taken into consideration in ongoing development of the Ariane 6 launcher. Scheduled for 2020, Ariane 6’s maiden flight will, according to ESA, continue to secure “Europe’s access to space”.

MINITURISED LASER IGNITION SYSTEM

CTR researches into compact, diode-pumped solid-state lasers and ignition systems as well as their integration in various industrial applications. Miniaturising the laser source, which does not require any adjustable elements at all and can therefore withstand extreme temperatures and vibrations, has several advantages: a high degree of flexibility regarding the position of the ignition plasma inside the combustion chamber and a much higher pulse power compared with electrical ignition systems enable more reliable ignition even with complex mixture ratios and high fuel velocities. In addition to successful trials in car and stationary large gas engines, the laser source has also been tested for aviation use in jet engines.

ABOUT CTR

As a research centre for smart sensors and system integration, CTR is one of a few non-university research facilities in Austria. Its mission and goal is to develop advanced products and processes based on integrated sensors, micro and nano systems. Established in 1997, CTR conducts research in regional, national and international R&D projects, is a member of Forschung Austria and has filed countless patents with partners in science and industry. CTR is part of Austria’s COMET research programme with the ASSIC centre of excellence - Austrian Smart Systems Integration Research Center.

Weitere Informationen:

http://www.ctr.at/en/newspressvideos/press-releases.html

Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>