Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landsat's TIRS Instrument Comes Out of First Round of Thermal Vacuum Testing

02.11.2011
The Thermal Infrared Sensor (TIRS) that will fly on the next Landsat satellite came out of its first round of thermal vacuum testing Tuesday, October 4 at NASA's Goddard Space Flight Center, Greenbelt, Md.

The two-month test marked the first time engineers evaluated the fully-assembled instrument at its normal operating temperature, a frigid 43 Kelvin (-382° F). The verdict is that TIRS is living up to its design and even exceeding expectations in some areas.

The thermal imager is one of two instruments that will fly on the Landsat Data Continuity Mission (LDCM) scheduled to launch in December 2012. A late addition to the mission, TIRS is designed and built in-house at Goddard. It uses a new detector technology called Quantum Well Infrared Photodetectors, or QWIPs, that will continue and improve upon the thermal infrared data collected by the Thematic Mapper on Landsat 5 and by the Enhanced Thermal Mapper-Plus on Landsat 7, both currently collecting data in orbit.

One of the important applications of TIRS will be to help scientists and resource managers monitor water evaporation and transpiration over Earth's land surface by measuring radiation emitted in two thermal bands of the electromagnetic spectrum. TIRS's resolution is 100 meters, which allows monitoring on a field-by-field basis for agriculture. This type of detail is vital for water managers in the semi-arid western U.S. states.

Three shifts of engineers manned the testing facility at Goddard 24-7 while TIRS was in the thermal-vacuum test chamber. Inside the blue cylindrical chamber, TIRS viewed targets that provided calibrated thermal illumination for TIRS to sense and sent data to a computer that simulated the spacecraft. The air was pumped out and the temperature in the chamber lowered with liquid nitrogen. Then the instrument's cryocooler was turned on. The cryocooler's job is to maintain a steady 43 K for the three detector arrays even when the chamber temperature goes up and down -- mimicking the temperature changes on the light and dark sides of Earth in space as the satellite orbits our planet.

"In many areas TIRS is even exceeding its requirements," says Deputy Instrument Manager Betsy Forsbacka at NASA Goddard.

A few surprises occurred as well, including the cryocooler working more efficiently than expected and cooling the detectors an extra 5 degrees Kelvin -- good news for the heat-sensitive detector arrays. But these kinds of surprises are normal at this stage of testing, and finding them now means the team has time to understand and adjust procedures for operating the instrument, says Forsbacka.

As TIRS heads into environmental testing, including another round in the thermal vacuum chamber, the engineering team is working hard to iron out the kinks to meet their tight delivery deadline. The schedule is "the elephant in the room," says Forsbacka, but she is confident they'll make it. "The big things are going right," she says. And for an instrument that usually takes four years to make space-ready, she adds that the team has gone above and beyond. "We're this close to building an instrument in three years that nobody thought we could do."

TIRS is scheduled to be on the dock and ready for integration with the LDCM spacecraft at Orbital Science Corp. in Gilbert, Ariz. in late January, 2012.

The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all.

For more information on Landsat, visit:
http://www.nasa.gov/landsat Ellen Gray
NASA's Goddard Space Flight Center, Greenbelt, Md.

Ellen Gray | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/tirs-thermal.html

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>