Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers

12.10.2011
Physicists establish dynamic Jahn-Teller effect in defective diamonds

A University at Buffalo-led research team has established the presence of a dynamic Jahn-Teller effect in defective diamonds, a finding that will help advance the development of diamond-based systems in applications such as quantum information processing.

"We normally want things to be perfect, but defects are actually very important in terms of electronic applications," said Peihong Zhang, the UB associate professor of physics who led the study. "There are many proposals for the application of defective diamonds, ranging from quantum computing to biological imaging, and our research is one step toward a better understanding of these defect systems."

The research was published online Sept. 30 in Physical Review Letters: http://www.buffalo.edu/news/pdf/October11/jahn-teller-effect.pdf.

The findings deal with diamonds whose crystal structure contains a particular defect: a nitrogen atom that sits alongside a vacant space in an otherwise perfect lattice made only of carbon.

At the point of the imperfection -- the so-called "nitrogen-vacancy center" -- a single electron can jump between different energy states. (The electron rises to a higher, "excited" energy state when it absorbs a photon and falls back to a lower energy state when it emits a photon).

Understanding how the diamond system behaves when the electron rises to an excited state called a "3E" state is critical to the success of such proposed applications as quantum computing.

The problem is that at the nitrogen-vacancy center, the 3E state has two orbital components with exactly the same energy -- a configuration that is inherently unstable.

In response, the lattice "stabilizes" by rearranging itself. Atoms near the nitrogen-vacancy center move slightly, resulting in a new geometry that has a lower energy and is more stable.

This morphing is known as the Jahn-Teller effect, and until recently, the effect's precise parameters in defective diamonds remained unknown.

Zhang and colleagues from the Rensselaer Polytechnic Institute in Troy, N.Y., are the first to crack that mystery. Using UB's supercomputing facility, the Center for Computational Research, the team conducted calculations that reveal how, exactly, the diamond lattice distorts.

Their findings align with experimental results from other research studies, and shed light on important topics such as how long an excited electron at the nitrogen-vacancy center will stay coherently at a higher energy state.

The UB-Rensselaer study was funded by the Department of Energy.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Related Stories:

Physicist Peihong Zhang Among Three UB Researchers to Receive New NSF CAREER Awards:

http://www.buffalo.edu/news/12218

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>