Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just seven photons can act like billions

11.09.2018

A system made of just a handful of particles acts just like larger systems, allowing scientists to study quantum behaviour more easily.

Most substances physicists study are made up of huge numbers of particles - so large that there is essentially no difference between the behavioural properties of a drop or a swimming pool's worth of pure water. Even a single drop can contain more than a quadrillion particles.


Artist's rendering of the core of the apparatus.

Credit: Imperial College London

This makes understanding their collective behaviour relatively easy. For example, both the water in the drop and in the pool will freeze at 0?C and boil at 100?C.

Such 'phase transitions' (i.e. from liquid to solid or from liquid to gas) can appear abrupt in these large systems, because so many particles are involved that they all appear to act at once. But what about in far smaller systems? When there are only a handful of particles, do the same rules of phase transitions apply?

To answer these questions, a team of scientists from Imperial College London, the University of Oxford and Karlsruhe Institute of Technology, Germany, made a system of less than 10 photons, the fundamental particles of light. The results of their experiments, published today in Nature Physics, show that phase transitions still occur in systems made up of as few as seven particles on average.

Studying quantum behaviour of particles is much easier with fewer particles, so the fact that phase transitions occur in these small systems means scientists are better able to study quantum properties such as coherence.

Lead author Dr Robert Nyman, from the Department of Physics at Imperial, said: "Now that it's confirmed that 'phase transition' is still a useful concept in such small systems, we can explore properties in ways that would not be possible in larger systems.

"In particular, we can study the quantum properties of matter and light - what happens at the smallest scale when phase transitions occur."

The system the team studied was a Bose-Einstein condensate (BEC) of photons. BECs form when a gas of quantum particles are so cold or so close together that they can no longer be distinguished. A BEC is a state of matter that has very different properties from solids, liquids, gases or plasmas.

The team found that by adding photons to the system, a phase transition to a BEC would occur once the system reached around seven photons, fewer than in any other BEC seen before. Being so small, the transition was less abrupt than in larger systems like pools of water, but the fact that the transition occurred at a predictable point mirrors larger systems well.

The system was created with a simple apparatus - some fluorescent dye and curved mirrors. This means that as well as being useful in the study of quantum properties, the system could be used to create and manipulate special states of light.

Co-author Dr Florian Mintert, from the Department of Physics at Imperial, said: "With the best of two distinct worlds - the physics of phase transitions and the accessibility of small systems - this unusual light source has potential applications in measurement or sensing."

Hayley Dunning | EurekAlert!
Further information:
https://www.imperial.ac.uk/news/188068/just-seven-photons-like-billions/
http://dx.doi.org/10.1038/s41567-018-0270-1

More articles from Physics and Astronomy:

nachricht Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films
23.08.2019 | Universität Hamburg

nachricht Building an atomic-scale vacuum trap for spin-polarized electrons
23.08.2019 | University of Hamburg Sonderforschungsbereich 668

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>