Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just seven photons can act like billions

11.09.2018

A system made of just a handful of particles acts just like larger systems, allowing scientists to study quantum behaviour more easily.

Most substances physicists study are made up of huge numbers of particles - so large that there is essentially no difference between the behavioural properties of a drop or a swimming pool's worth of pure water. Even a single drop can contain more than a quadrillion particles.


Artist's rendering of the core of the apparatus.

Credit: Imperial College London

This makes understanding their collective behaviour relatively easy. For example, both the water in the drop and in the pool will freeze at 0?C and boil at 100?C.

Such 'phase transitions' (i.e. from liquid to solid or from liquid to gas) can appear abrupt in these large systems, because so many particles are involved that they all appear to act at once. But what about in far smaller systems? When there are only a handful of particles, do the same rules of phase transitions apply?

To answer these questions, a team of scientists from Imperial College London, the University of Oxford and Karlsruhe Institute of Technology, Germany, made a system of less than 10 photons, the fundamental particles of light. The results of their experiments, published today in Nature Physics, show that phase transitions still occur in systems made up of as few as seven particles on average.

Studying quantum behaviour of particles is much easier with fewer particles, so the fact that phase transitions occur in these small systems means scientists are better able to study quantum properties such as coherence.

Lead author Dr Robert Nyman, from the Department of Physics at Imperial, said: "Now that it's confirmed that 'phase transition' is still a useful concept in such small systems, we can explore properties in ways that would not be possible in larger systems.

"In particular, we can study the quantum properties of matter and light - what happens at the smallest scale when phase transitions occur."

The system the team studied was a Bose-Einstein condensate (BEC) of photons. BECs form when a gas of quantum particles are so cold or so close together that they can no longer be distinguished. A BEC is a state of matter that has very different properties from solids, liquids, gases or plasmas.

The team found that by adding photons to the system, a phase transition to a BEC would occur once the system reached around seven photons, fewer than in any other BEC seen before. Being so small, the transition was less abrupt than in larger systems like pools of water, but the fact that the transition occurred at a predictable point mirrors larger systems well.

The system was created with a simple apparatus - some fluorescent dye and curved mirrors. This means that as well as being useful in the study of quantum properties, the system could be used to create and manipulate special states of light.

Co-author Dr Florian Mintert, from the Department of Physics at Imperial, said: "With the best of two distinct worlds - the physics of phase transitions and the accessibility of small systems - this unusual light source has potential applications in measurement or sensing."

Hayley Dunning | EurekAlert!
Further information:
https://www.imperial.ac.uk/news/188068/just-seven-photons-like-billions/
http://dx.doi.org/10.1038/s41567-018-0270-1

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>