Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter had growth disorders

28.08.2018

Researchers of the Universities of Bern and Zürich and of ETH Zürich show how Jupiter was formed. Data collected from meteorites had indicated that the growth of the giant planet had been delayed for two million years. Now the researchers have found an explanation: Collisions with kilometer-sized blocks generated high energy, which meant that in this phase hardly any accretion of gas could take place and the planet could only grow slowly.

With an equator diameter of around 143,000 kilometers, Jupiter is the largest planet in the solar system and has 300 times the mass of the Earth. The formation mechanism of giant planets like Jupiter has been a hotly debated topic for several decades.


Formation of Jupiter in 3 stages.

© Nature Astronomy / Yann Alibert (University of Bern) et. al.


Jupiter’s southern hemisphere photographed by NASA’s Juno spacecraft.

© NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/ Seán Doran

Now, astrophysicists of the Swiss National Centre of Competence in Research (NCCR) PlanetS of the Universities of Bern and Zürich and ETH Zürich have joined forces to explain previous puzzles about how Jupiter was formed and new measurements. The research results were published in the magazine “Nature Astronomy”.

“We could show that Jupiter grew in different, distinct phases,” explains Julia Venturini, postdoc at the University of Zürich. “Especially interesting is that it is not the same kind of bodies that bring mass and energy,” adds Yann Alibert, Science Officer of PlanetS and first author of the paper. First, the planetary embryo rapidly accreted small, centimeter-sized pebbles and quickly built a core during the initial one million years.

... more about:
»Earth »Jupiter »meteorite »solar nebula »solar system

The following two million years were dominated by slower accretion of larger, kilometer-sized rocks called planetesimals. They hit the growing planet with great energy, releasing heat. “During the first stage the pebbles brought the mass,” Yann Alibert explains: “In the second phase, the planetesimals also added a bit of mass, but what is more important, they brought energy.”

After three million years, Jupiter had grown to a body of 50 Earth masses. Then, the third formation phase started dominated by gas runaway accretion leading to today’s gas giant with more than 300 Earth masses.

Solar system divided into two parts

The new model for Jupiter’s birth matches the meteorite data that were presented at a conference in the US last year. At first, Julia Venturini and Yann Alibert were puzzled when they listened to the results. Measurements of the composition of meteorites showed that in the primordial times of the solar system the solar nebula was divided into two regions during two million years.

It could therefore be concluded that Jupiter acted as a kind of a barrier when it grew from 20 to 50 Earth masses. During this period, the forming planet must have perturbed the dust disk, creating an over-density that trapped the pebbles outside of its orbit. Therefore, material from outward regions could not mix with material of the inner ones until the planet reached enough mass to perturb and scatter rocks inwards.

“How could it have taken two million years for Jupiter to grow from 20 to 50 Earth masses?” asked Julia Venturini. “That seemed much too long,” she explains: “That was the triggering question that motivated our study.”

A discussion by email started among NCCR PlanetS researchers of the Universities of Bern and Zürich and ETH Zürich and the following week the experts in the fields of astrophysics, cosmochemistry and hydrodynamics arranged a meeting in Bern. “In a couple of hours we knew what we had to calculate for our study,” says Yann Alibert: “This was only possible within the framework of the NCCR, which links scientists from various fields.”

Explanation for delayed growth

With their calculations, the researchers showed that the time the young planet spent in the mass range of 15 to 50 Earth masses was indeed much longer than previously thought. During this formation phase the collisions with the kilometer-sized rocks provided enough energy to heat the gaseous atmosphere of the young Jupiter and prevented rapid cooling, contraction and further gas accretion.

“Pebbles are important in the first stages to build a core quickly, but the heat provided by planetesimals is crucial to delay gas accretion so that it matches the timescale given by the meteorite data,” the astrophysicists summarize. They are convinced that their results provide as well key elements for solving long-standing problems of the formation of Uranus and Neptune and exoplanets in this mass regime.

Publication:
Yann Alibert, Julia Venturini, Ravit Helled, Sareh Ataiee, Remo Burn, Luc Senecal, Willy Benz, Lucio Mayer, Christoph Mordasini, Sascha P. Quanz and Maria Schönbächler: The formation of Jupiter by hybrid pebble–planetesimal accretion, Nature Astronomy, 27 August 2018, http://dx.doi.org/10.1038/s41550-018-0557-2

Contact:

PD Dr. Yann Alibert

NCCR PlanetS and Center for Space and Habitability (CSH), University of Bern
Phone: +33 6 81 00 17 79
yann.alibert@space.unibe.ch

Dr. Julia Venturini

NCCR PlanetS,
University of Zürich
Phone: +41 44 635 58 03
julia@physik.uzh.ch

Wissenschaftliche Ansprechpartner:

PD Dr. Yann Alibert

NCCR PlanetS and Center for Space and Habitability (CSH), University of Bern
Phone: +33 6 81 00 17 79
yann.alibert@space.unibe.ch

Dr. Julia Venturini

NCCR PlanetS,
University of Zürich
Phone: +41 44 635 58 03
julia@physik.uzh.ch

Originalpublikation:

Yann Alibert, Julia Venturini, Ravit Helled, Sareh Ataiee, Remo Burn, Luc Senecal, Willy Benz, Lucio Mayer, Christoph Mordasini, Sascha P. Quanz and Maria Schönbächler: The formation of Jupiter by hybrid pebble–planetesimal accretion, Nature Astronomy, 27 August 2018, http://dx.doi.org/10.1038/s41550-018-0557-2

Nathalie Matter | Universität Bern

Further reports about: Earth Jupiter meteorite solar nebula solar system

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>