Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Journey to the Beginning of Time

08.10.2018

With the Pristine survey, an international team is looking for and researching the oldest stars in our Universe. The goal is to learn more about the young Universe right after the Big Bang. In a recent publication, the scientists have reported on the discovery of a particularly metal-poor star: a messenger from the distant past.

In order to study the early Universe astronomers, have different methods at their disposal: One is to look to very large distances and therefore back in time, to see the first stars and galaxies as they were many billions of years ago.


Pristine_221.8781+9.7844 and its surroundings.

(Credits: N. Martin, DECALS survey, and Aladin)


The main features in the spectrum of Pristine 221.8781+9.7844 are hydrogen lines, very few other elements are imprinted in this spectrum. In the solar spectrum on the other hand we see many lines.

(Credit: AIP/E. Starkenburg)

Another option is to examine the oldest surviving stars from our own Galaxy, the Milky Way, and use them to get a glimpse of what the conditions were like in the early Universe. The "Pristine" survey, led by Dr Else Starkenburg from the Leibniz Institute for Astrophysics Potsdam (AIP) and Nicolas Martin from the University of Strasbourg, is looking to do just that.

The scientists employ a special colour filter on the Canada-France-Hawaii Telescope to search for stars with relatively pristine atmospheres. In their recent publication they have used this technique to discover one of the most metal-poor stars known. Detailed follow-up studies with spectrographs of the Isaac Newton Group in Spain and the European Southern Observatory in Chile have demonstrated that the star has indeed very few heavy elements in its atmosphere.

„The star contains less than one ten-thousandth of the metal content of the Sun. Additionally, its detailed pattern of different elements stands out. Whereas most heavy element depleted stars that exhibit such low levels of for instance iron and calcium do show a large enhancement in carbon, this star does not. This makes this star the second of its kind and an important messenger from the early Universe“, says Else Starkenburg.

Finding these oldest messengers is no easy task, since they are quite rare among the overwhelming population of younger stars in our Galaxy. Just after the Big Bang, the Universe was filled with hydrogen and helium and a bit of lithium.

No heavier elements were around, as these are generated in the hot interiors of stars – and those did not exist yet. Our Sun has about two percent of heavier elements in its atmosphere, as can be seen in the spectrum of its light. Because of this fact, astrophysicists can conclude that the sun has emerged as part of a later generation of stars - and is made up of "recycled" material from stars that lived long before it and have since died out.

In searching for the oldest stars, scientists look for stars with more pristine atmospheres than our Sun. The more pristine the atmosphere, the earlier the generation in which this star was born.

Studying stars of different generations allows us to understand the history of the Galaxy - an area of research that is therefore also called Galactic archaeology. The existence of a class of metal-poor stars with low carbon abundances suggests that there must have been several formation channels in the early Universe through which long-lived, low-mass stars were formed.

Wissenschaftliche Ansprechpartner:

Dr Else Starkenburg, 0331-7499 213, estarkeburg@aip.de

Originalpublikation:

Monthly Notices of the Royal Astronomical Society (Oxford University Press)
https://doi.org/10.1093/mnras/sty2276

Weitere Informationen:

http://bit.ly/Pristine_Star

Dr. Janine Fohlmeister | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A cavity leads to a strong interaction between light and matter
21.10.2019 | Universität Basel

nachricht A new stable form of plutonium discovered at the ESRF
21.10.2019 | European Synchrotron Radiation Facility

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>