Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's official: Phonon and magnon are a couple

19.10.2016

Professor Park Je-Geun, Associate Director of the Center for Correlated Electron Systems (CCES), within the Institute for Basic Science (IBS), and colleagues have observed, quantified and created a new theoretical model of the coupling of two forms of collective atomic excitation, known as magnons and phonons in crystals of the antiferromagnet manganite (Y,Lu)MnO3, a mineral made of manganese oxide and rare-earth elements called yttrium (Y) and lutetium (Lu).

This study could provide an important breakthrough for solving a 100 year old physical problem, and deepen our knowledge of an interesting class of materials called multiferroics. The complete theoretical model and experimental observations can be read on Nature Communications.


The image shows a good match between the results of the neutron scattering experiments (top) and the theoretical model (bottom).

Credit: IBS, Nature Comms

While we generally think of solids as static objects, their molecules are actually in a constant state of vibration. These small vibrations are partly due to phonons and magnons, which are collective excitations and disturbances inside a crystal. Collective means that they are not limited to a single atom, but influence a group of neighbouring atoms. Phonons are uniform oscillations at a single frequency.

For example, short-wavelength phonons play a role in thermic conduction, while long-wavelength phonons give rise to sound, which is the origin of the word ("phonos" means voice in Greek). Magnons are collective perturbations of the electrons' spins, the compasses of the atoms. They influence the magnetic characteristics of the materials. This report shows, for the first time, that the two couple and as a consequence their vibratory behavior is not constant over time.

IBS scientists measured the atomic and molecular motion of (Y,Lu)MnO3 crystals by inelastic neutron scattering experiments and also derived a new theoretical model to explain what they observed experimentally. Interestingly, they had to go beyond the standard linear theory, which is normally used to interpret the measurements. The standard linear spin wave theory presumes that the vibration of magnons and phonons is harmonic and stable over time, like the oscillation of a spring without friction.

"Initially we used the simplest model, which is the linear spin wave theory without a coupling, but we realised that it was like the classic case of putting the elephant in the fridge: You can somehow do it, but the numbers become unrealistic and there is something wrong with it," explains professor Park Je-Geun. "Then we did the calculations again, this time including the coupling, and we discovered that we could explain the data and, most importantly, the final analysis gave us the numbers that make sense."

While the standard linear spin wave theory says that magnons and phonons vibrate forever and do not influence each other, a coupling would make phonons and magnons unstable, and allow an otherwise forbidden decay. For example, when a phonon becomes unstable as a consequence of the coupling to a magnon, it reduces its oscillations, decays and converts it into a magnon.

"The idea of a magnon-phonon coupling has already been around as a possible explanation for the uniquely low coefficient of thermal expansion of the invar materials. These industrially important materials have a range of uses from Swiss watches to high-speed trains, but why these materials exhibit such a counter intuitive behavior has been a puzzle for many decades," describes the professor.

While the coupling was rarely observed before, this is the first time that it has been quantified in manganite crystal: "It is a weak coupling and present only in some materials, because it needs a particular triangular atomic architecture. It also conflicts with the mainstream belief that magnons and phonons are stable over time. This could explain why the coupling has never been carefully analyzed before, and why most scientists have ignored it," comments the professor.

In the future, the team would like to study this coupling in other materials and ideally demonstrate that one can artificially convert phonons into magnons and vice versa.

Dahee Carol Kim | EurekAlert!

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>