Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers help detect very-high-energy gamma rays from Crab pulsar

07.10.2011
Iowa State University astrophysicists are part of an international team that unexpectedly discovered very-high-energy gamma rays from the already well-known Crab pulsar star.

The team's findings are published in the Oct. 7 issue of the journal Science.

"This is the first time very-high-energy gamma rays have been detected from a pulsar - a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the sun," said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

The discovery was the work of three post-doctoral researchers – including Martin Schroedter, who left Iowa State last year for a position at the Fred Lawrence Whipple Observatory near Amado, Ariz.

The researchers' finding was a surprise, said Amanda Weinstein, an Iowa State assistant professor of physics and astronomy. Astrophysicists started looking for very-high-energy gamma rays from the Crab pulsar decades ago and had never found them with energies greater than 25 billion electron volts.

This time, using the $20 million Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern Arizona, the researchers discovered pulsed gamma rays from the Crab pulsar that exceeded energies of 100 billion electron volts.

Krennrich said such high energies can't be explained by the current understanding of pulsars.

Pulsars are compact neutron stars that spin rapidly and have a very strong magnetic field, Krennrich said. The spin and magnetism pull electrons from the star and accelerate them along magnetic field lines, creating narrow bands of "curvature radiation."

Krennrich and Weinstein said curvature radiation doesn't explain the very-high-energy gamma rays reported in the Science paper. And so astrophysicists need to develop new ideas about pulsars and how they create gamma rays.

Gamma rays are a form of high-energy electromagnetic radiation. They have energies of one million to several trillion electron volts; the energy of visible light is one electron volt.

Even with their very high energies, gamma rays can't penetrate the earth's atmosphere. When they hit the atmosphere, they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. Those showers move very fast. And they're not very bright.

And so it takes a very sensitive instrument such as VERITAS to detect those rays. VERITAS features four, 12-meter reflector dishes covered with 350 mirrors. All those mirrors direct light into cameras mounted in front of each dish. Each camera is about 7 feet across and contains 499 tube-shaped photon detectors or pixels.

All those detectors were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. The assembly took about $1 million and a lot of work by a team of Iowa State researchers.

Weinstein, then working as a post-doctoral researcher at the University of California, Los Angeles, helped design and build the VERITAS array trigger. The trigger is an electronics system that works in real-time to determine which telescope observations contain useful data that should be recorded for analysis.

Researchers believe a better understanding of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

The three lead authors of the Science paper are Schroedter; Andrew McCann of McGill University in Montreal; and Nepomuk Otte of the University of California, Santa Cruz and now at the Georgia Institute of Technology in Atlanta. Iowa State co-authors are Krennrich; Weinstein; Matthew Orr, a post-doctoral research associate in physics and astronomy; Arun Madhavan, a doctoral student in physics and astronomy; and Asif Imran, a former Iowa State doctoral student who's now at Los Alamos National Laboratory in New Mexico.

The research project was supported by the U.S. Department of Energy Office of Science, the National Science Foundation, the Smithsonian Institution, the National Sciences and Energy Research Council of Canada, Science Foundation Ireland, and the Science and Technology Facilities Council in the United Kingdom.

There's more than a gamma-ray discovery in this particular research paper, Weinstein said. There's also a lesson about scientific discovery.

"Because this was something people didn't expect, it took courage to pursue this study," she said. "The lesson is you keep making your instruments better and you keep looking."

Contacts:

Frank Krennrich
Physics and Astronomy
515-294-3736
krennich@iastate.edu
Amanda Weinstein
Physics and Astronomy
515-294-6448
amandajw@iastate.edu
Mike Krapfl
News Service
515-294-4917
mkrapfl@iastate.edu

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>