Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers help detect very-high-energy gamma rays from Crab pulsar

07.10.2011
Iowa State University astrophysicists are part of an international team that unexpectedly discovered very-high-energy gamma rays from the already well-known Crab pulsar star.

The team's findings are published in the Oct. 7 issue of the journal Science.

"This is the first time very-high-energy gamma rays have been detected from a pulsar - a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the sun," said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

The discovery was the work of three post-doctoral researchers – including Martin Schroedter, who left Iowa State last year for a position at the Fred Lawrence Whipple Observatory near Amado, Ariz.

The researchers' finding was a surprise, said Amanda Weinstein, an Iowa State assistant professor of physics and astronomy. Astrophysicists started looking for very-high-energy gamma rays from the Crab pulsar decades ago and had never found them with energies greater than 25 billion electron volts.

This time, using the $20 million Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern Arizona, the researchers discovered pulsed gamma rays from the Crab pulsar that exceeded energies of 100 billion electron volts.

Krennrich said such high energies can't be explained by the current understanding of pulsars.

Pulsars are compact neutron stars that spin rapidly and have a very strong magnetic field, Krennrich said. The spin and magnetism pull electrons from the star and accelerate them along magnetic field lines, creating narrow bands of "curvature radiation."

Krennrich and Weinstein said curvature radiation doesn't explain the very-high-energy gamma rays reported in the Science paper. And so astrophysicists need to develop new ideas about pulsars and how they create gamma rays.

Gamma rays are a form of high-energy electromagnetic radiation. They have energies of one million to several trillion electron volts; the energy of visible light is one electron volt.

Even with their very high energies, gamma rays can't penetrate the earth's atmosphere. When they hit the atmosphere, they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. Those showers move very fast. And they're not very bright.

And so it takes a very sensitive instrument such as VERITAS to detect those rays. VERITAS features four, 12-meter reflector dishes covered with 350 mirrors. All those mirrors direct light into cameras mounted in front of each dish. Each camera is about 7 feet across and contains 499 tube-shaped photon detectors or pixels.

All those detectors were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. The assembly took about $1 million and a lot of work by a team of Iowa State researchers.

Weinstein, then working as a post-doctoral researcher at the University of California, Los Angeles, helped design and build the VERITAS array trigger. The trigger is an electronics system that works in real-time to determine which telescope observations contain useful data that should be recorded for analysis.

Researchers believe a better understanding of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

The three lead authors of the Science paper are Schroedter; Andrew McCann of McGill University in Montreal; and Nepomuk Otte of the University of California, Santa Cruz and now at the Georgia Institute of Technology in Atlanta. Iowa State co-authors are Krennrich; Weinstein; Matthew Orr, a post-doctoral research associate in physics and astronomy; Arun Madhavan, a doctoral student in physics and astronomy; and Asif Imran, a former Iowa State doctoral student who's now at Los Alamos National Laboratory in New Mexico.

The research project was supported by the U.S. Department of Energy Office of Science, the National Science Foundation, the Smithsonian Institution, the National Sciences and Energy Research Council of Canada, Science Foundation Ireland, and the Science and Technology Facilities Council in the United Kingdom.

There's more than a gamma-ray discovery in this particular research paper, Weinstein said. There's also a lesson about scientific discovery.

"Because this was something people didn't expect, it took courage to pursue this study," she said. "The lesson is you keep making your instruments better and you keep looking."

Contacts:

Frank Krennrich
Physics and Astronomy
515-294-3736
krennich@iastate.edu
Amanda Weinstein
Physics and Astronomy
515-294-6448
amandajw@iastate.edu
Mike Krapfl
News Service
515-294-4917
mkrapfl@iastate.edu

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

A new view of microscopic interactions

02.07.2020 | Life Sciences

B-cell protectors

02.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>