Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers help detect very-high-energy gamma rays from Crab pulsar

07.10.2011
Iowa State University astrophysicists are part of an international team that unexpectedly discovered very-high-energy gamma rays from the already well-known Crab pulsar star.

The team's findings are published in the Oct. 7 issue of the journal Science.

"This is the first time very-high-energy gamma rays have been detected from a pulsar - a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the sun," said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

The discovery was the work of three post-doctoral researchers – including Martin Schroedter, who left Iowa State last year for a position at the Fred Lawrence Whipple Observatory near Amado, Ariz.

The researchers' finding was a surprise, said Amanda Weinstein, an Iowa State assistant professor of physics and astronomy. Astrophysicists started looking for very-high-energy gamma rays from the Crab pulsar decades ago and had never found them with energies greater than 25 billion electron volts.

This time, using the $20 million Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern Arizona, the researchers discovered pulsed gamma rays from the Crab pulsar that exceeded energies of 100 billion electron volts.

Krennrich said such high energies can't be explained by the current understanding of pulsars.

Pulsars are compact neutron stars that spin rapidly and have a very strong magnetic field, Krennrich said. The spin and magnetism pull electrons from the star and accelerate them along magnetic field lines, creating narrow bands of "curvature radiation."

Krennrich and Weinstein said curvature radiation doesn't explain the very-high-energy gamma rays reported in the Science paper. And so astrophysicists need to develop new ideas about pulsars and how they create gamma rays.

Gamma rays are a form of high-energy electromagnetic radiation. They have energies of one million to several trillion electron volts; the energy of visible light is one electron volt.

Even with their very high energies, gamma rays can't penetrate the earth's atmosphere. When they hit the atmosphere, they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. Those showers move very fast. And they're not very bright.

And so it takes a very sensitive instrument such as VERITAS to detect those rays. VERITAS features four, 12-meter reflector dishes covered with 350 mirrors. All those mirrors direct light into cameras mounted in front of each dish. Each camera is about 7 feet across and contains 499 tube-shaped photon detectors or pixels.

All those detectors were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. The assembly took about $1 million and a lot of work by a team of Iowa State researchers.

Weinstein, then working as a post-doctoral researcher at the University of California, Los Angeles, helped design and build the VERITAS array trigger. The trigger is an electronics system that works in real-time to determine which telescope observations contain useful data that should be recorded for analysis.

Researchers believe a better understanding of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

The three lead authors of the Science paper are Schroedter; Andrew McCann of McGill University in Montreal; and Nepomuk Otte of the University of California, Santa Cruz and now at the Georgia Institute of Technology in Atlanta. Iowa State co-authors are Krennrich; Weinstein; Matthew Orr, a post-doctoral research associate in physics and astronomy; Arun Madhavan, a doctoral student in physics and astronomy; and Asif Imran, a former Iowa State doctoral student who's now at Los Alamos National Laboratory in New Mexico.

The research project was supported by the U.S. Department of Energy Office of Science, the National Science Foundation, the Smithsonian Institution, the National Sciences and Energy Research Council of Canada, Science Foundation Ireland, and the Science and Technology Facilities Council in the United Kingdom.

There's more than a gamma-ray discovery in this particular research paper, Weinstein said. There's also a lesson about scientific discovery.

"Because this was something people didn't expect, it took courage to pursue this study," she said. "The lesson is you keep making your instruments better and you keep looking."

Contacts:

Frank Krennrich
Physics and Astronomy
515-294-3736
krennich@iastate.edu
Amanda Weinstein
Physics and Astronomy
515-294-6448
amandajw@iastate.edu
Mike Krapfl
News Service
515-294-4917
mkrapfl@iastate.edu

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>