Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astronomer helps research team see misaligned planets in distant system

18.10.2013
Using data from NASA's Kepler space telescope, an international team of astronomers has discovered a distant planetary system featuring multiple planets orbiting at a severe tilt to their host star.

Such tilted orbits had been found in planetary systems featuring a "hot Jupiter," a giant planet in a close orbit to its host star. But, until now, they hadn't been observed in multiplanetary systems without such a big interloping planet.

The discovery is reported in a paper, "Stellar Spin-Orbit Misalignment in a Multiplanet System," published in the Oct. 18 issue of the journal Science. The lead author of the study is Daniel Huber of NASA's Ames Research Center in Mountain View, Calif. Steve Kawaler, an Iowa State University professor of physics and astronomy and a leader of the Kepler Asteroseismic Investigation, is a co-author.

"This is a new level of detail about the architecture of a planetary system outside our solar system," Kawaler said. "These studies allow us to draw a detailed picture of a distant system that provides a new and critical test of our understanding of how these very alien solar systems are structured."

Kawaler contributed as part of the research team that studied regular changes in the brightness of the host star, Kepler-56, an aging red giant star with two planets in close orbits and a massive third planet in a distant orbit. By measuring those oscillation frequencies and using spectroscopy data about the star's temperature and chemistry, researchers measured the star's diameter and other properties.

The paper reports Kepler-56 is more than four times the radius of our sun. Its mass is also 30 percent greater than our sun. It is about 3,000 light years from Earth.

Kawaler said he was also part of the team that used studies of the changes in brightness to help determine the tilt of the rotation axis of Kepler-56. That axis is tilted 45 degrees to the line of sight from Earth.

Generally, Kawaler said, the simplest way for a planetary system to develop is with the orbits in the same plane as the host star's equator. That typically indicates the planets formed from a thin disk of dust and gas surrounding the host star. The planets in our solar system all orbit within 7 degrees of the plane of the sun's equator.

A planet orbit that tilts away from other planets or from the host star's equator can mean the planet had a traumatic youth, Kawaler said. It may have been pulled into a different plane after encountering another planet or planets. That's generally the case with migrating hot Jupiters. They change their orbits after encounters with other planets and material, and therefore have a higher chance of tilted orbits.

In the case of Kepler-56, however, the more massive outer planet seems to be maintaining the tilted orbits of the two inner planets.

"It issues a continuous tug on the orbit of the smaller ones, pulling them into their inclined orbits," Kawaler said.

All of those Kepler-56 observations, the researchers noted in their Science paper, add up to firm evidence that tilted planetary orbits are possible even in systems that don't contain a hot Jupiter.

Contacts:
Steve Kawaler, Physics and Astronomy, 515-294-9728, sdk@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>