Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interference as a new method for cooling quantum devices

08.02.2018

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature increase due to the thermal noise that is produced by environment and or other components nearby.


A physical realization of a thermal rectifier

© Shabir Barzanjeh, André Xuereb, Matteo Aquilina, 2018

Dr Shabir Barzanjeh, a postdoc at the Institute of Science and Technology Austria (IST Austria), together with Dr André Xuereb from the University of Malta and Matteo Aquilina from the National Aerospace Centre in Malta has now proposed a novel method to keep quantum devices cool. Their approach, which they have proven to work theoretically, relies on quantum interference.

If a hotter object is placed next to a cooler one, the heat normally has only one option: it can only flow from the hotter object to the cooler one. Therefore, if one wants to cool an object that is already cooler than its surroundings, like it is done in a household fridge, an effort has to be made to achieve this.

A new method for cooling down the elements of quantum devices such as qubits, the tiny building blocks of quantum computers, was now theoretically proven to work by a group of physicists.

“Essentially the device we are proposing is working like a fridge. But here we are using a quantum mechanical principle to realize it,” explains Shabir Barzanjeh, the lead author of the study and postdoc in the research group of Professor Johannes Fink. In their paper, they studied how thermal noise flows through quantum devices and they devised a method that can prevent the heat flow to warm up the sensitive quantum device.

The secret lies in an additional heat bath, in other words: besides the object that needs to be cooled and the object that produces heat, there is a third object that can store heat, a so-called “heat bath”. This heat bath is connected to both other devices, and the researchers showed that it is possible to control its heat flow such that it cancels the heat coming from the warm object directly to the cool one via special quantum interference.

“So far, researchers have focused on controlling signal, but here we study the noise. This is quite different because a signal is coherent, and the noise isn’t”. Concerning the practical implementation of the mechanism that adds the phase shift to the thermal noise, Shabir Barzanjeh already has some ideas. It could be a mechanical object that vibrates, and maybe radiation pressure could be used to control the oscillation. “Now it is the time for experimentalists to verify the theory,” he says.

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.060601
http://ist.ac.at/fileadmin/user_upload/pictures/Press_pictures/180502_Shabir/Sha...

Bernhard Wenzl | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>