Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An interesting feature of the α-preformation probability was identified by Chinese researchers

01.08.2013
Probing the preformation of the α-particle in the α-decay process is a very attractive subject in studies of nuclear structure.

Recently, this crucial α-preformation probability was empirically deduced and exhibits a new feature that had been inferred to some extent by Professor REN Zhongzhou and his group from Department of Physics, Nanjing University. This work, titled "Model-independent trend of α-preformation probability", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2013, Vol. 56(8).


Pá values for the Po and Rn isotopic chains obtained from various models, including the present and previous results of the present group. A similar variation in all curves is clearly displayed.

Credit: ©Science China Press

Dating back to the end of the 19th century, nuclear physics established itself as a field of science with the discovery of radioactivity. Since those years, α decay has always been considered the eminent topic in nuclear physics. In particular, as the dominant decay mode of superheavy nuclei, it is currently the only useful tool in the identification of any new heavy element and its isotopes.

Theoretically, the decay process is usually imagined in the Gamow picture as a preformed α cluster tunneling through the α-daughter potential barrier. Without doubt, the α-preformation probability is critical in view of nuclear structure. Nevertheless, detailed studies of this quantity provide results that remain ambiguous, despite extensive experimental investigations.

In the present work, the authors proposed an empirical formula that for the first time directly deduces the preformation factor of the αparticle from the experimental data. The α-preformation factors of 171 even-even nuclei were initially obtained that strongly confirmed the key role played by the shell effect in the formation of the α cluster during decay. The study was also extended to include heavier cluster emissions with satisfactory results. These in turn prove to a certain degree that the present analysis of the α-preformation factor is reasonable and reliable.

Interestingly, a new feature of the α-preformation probability (Pα) became evident in a further study. From a different perspective, the α-preformation probabilities for a given isotopic chain extracted from different theoretical analyses were found to have quite similar behavior when comparing the present results with other studies. Across the various studies, the relative trend in the α-preformation probabilities for an isotopic chain were actually model-independent, although the deduced values of the α-preformation factor based on the respective model differ from each other (see Figure 1). The inference is that these studies are consistent with each other despite the different theoretical models, and the present study can be taken as a certain proof of reliability of the previous theoretical results.

This study gives valuable information on the preformation probability of emitted particles in α-decay, and the new model-independent feature has been identified in detail. The researchers hope that the present investigation can be extended to a broader range of nuclei, and be used to provide clues for their follow-up work on nuclear structure.

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11035001, 10975072, 10735010 and 11120101005), the National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400), the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N02), the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028), the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions (PAPD), the Research and Innovation Project for College Postgraduate of Jiangsu Province (Grant No. CXZZ12¬_0031) and the Science and Technology Development Fund of Macau (Grant No. 068/2011/A).

See the article: QIAN Y B, REN Z Z*. Model-independent trend of α-preformation probability. SCIENCE CHINA Physics, Mechanics & Astronomy, 2013, 56(8):1520-1524.

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

REN ZhongZhou | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>