Insight into Attosecond Physics

Anyone delving deep into matter must reckon with the fact that the usual time scales cease to be valid in the tiny dimensions of molecules, atoms and electrons. Molecules react within femtoseconds (millionths of a billionth of a second).

The motion of electrons in atoms is a thousand times faster still, lasting just a few attoseconds. The Laboratory for Attosecond Physics (LAP) team, headed by Prof. Ferenc Krausz, at Max Planck Institute of Quantum Optics in Garching and Ludwig Maximilian's University of Munich are conducting research on these ultrafast processes by means of ultrashort light flashes.

The physicists involved now present a new homepage (www.attoworld.de) that gives a broad view of their work, and explain to both the lay public and experts how they coax the microcosm into divulging its secrets.

Welcome to the dashing world of quanta. The new homepage www.attoworld.de in English is all about ultrafast motion and minute time dimensions. Due prominence is given to the fascinating interaction of electrons and light pulses.

The light pulses, produced with the most modern lasers, last just a few femtoseconds to attoseconds (an attosecond being a billionth of a billionth of a second). They allow the LAP scientists to photograph, so to speak, quantum particles and thus gain insight into the fundamental processes of life. Attosecond Physics also affords promising prospects in technology, for light waves and the electric and magnetic fields involved make it possible not only to observe, but also to control electrons. This opens the way to completely new applications, such as in information technology.

The new attoworld homepage now shows in detail how these ultrafast processes are being investigated. The scientific information provided is aimed at both the interested lay public and fellow scientists. After a personal introduction, the LAP team gives information on how to become a laser physicist, what constitutes a scientist's work and what fascinates each of them about attosecond technology.

In recent years attosecond physics has undergone enormous development. This is impressively testified to by the increasing number of renowned publications. The attoworld homepage now aims to accompany this fascinating area of physics with current articles, illustrations and photos. Regular clicking is always worthwhile.

Thorsten Naeser

Further information available from:

Thorsten Naeser
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: thorsten.naeser@mpq.mpg.de
Phone: + 49 89 32905 124
Dr. Christian Hackenberger
Ludwig Maximilian's University of Munich
Laboratory for Attosecond Physics
(Professor Ferenc Krausz)
Hans-Kopfermann-Str. 1
85748 Garching
E-mail: christian.hackenberger@mpq.mpg.de
Phone: + 49 89 32905 622
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations Office
Hans-Kopfermann-Str. 1
85748 Garching
e-mail: olivia.meyer-streng@mpq.mpg.de
Phone: +49 (0)89 / 32905 – 213
Fax: +49 (0)89 / 32905 – 200

Media Contact

Dr. Olivia Meyer-Streng Max-Planck-Institut

More Information:

http://www.mpq.mpg.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors