Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects Inspire X-ray Improvements: Nanostructures Modeled After Moth Eyes May Enhance Medical Imaging

04.07.2012
Using the compound eyes of the humble moth as their inspiration, an international team of physicists has developed new nanoscale materials that could someday reduce the radiation dosages received by patients getting X-rayed, while improving the resolution of the resulting images.
The work, led by Yasha Yi-a professor of the City University of New York, who is also affiliated with Massachusetts Institute of Technology and New York University-was published today in the Optical Society's (OSA) journal, Optics Letters.

Like their Lepidopteran cousins the butterflies, moths have large compound eyes, made up of many thousands of ommatidia-structures made up of a primitive cornea and lens, connected to photoreceptor cells. But moth eyes, unlike those of butterflies, are remarkably anti-reflective, bouncing back very little of the light that strikes them. The adaptation helps the insects be stealthier and less visible to predators during their nocturnal flights. Because of this feature, engineers have looked to the moth eye to help design more efficient coatings for solar panels and antireflective surfaces for military devices, among other applications.

Now Yi and his colleagues have gone a step further, using the moth eye as a model for a new class of materials that improve the light-capturing efficiency of X-ray machines and similar medical imaging devices.

In particular, the researchers focused on so-called “scintillation” materials: compounds that, when struck by incoming particles (say, X-ray photons), absorb the energy of the particles and then reemit that absorbed energy in the form of light. In radiographic imaging devices, such scintillators are used to convert the X-rays exiting the body into the visible light signals picked up by a detector to form an image.

One way to improve the output (the intensity of light signals read by the detector, and thus the resolution of the resulting images) is to increase the input-that is, to use a higher x-ray dosage. But that’s not healthy for patients because of the increased levels of radiation. An alternative, Yi and colleagues figured, is to improve the efficiency with which the scintillator converts X-rays to light. Their new material does just that.
It consists of a thin film, just 500 nanometers thick, made of a special type of crystal known as cerium-doped lutetium oxyorthosilicate. These crystals were encrusted with tiny pyramid-shaped bumps or protuberances made of the ceramic material silicon nitride. Each protuberance, or “corneal nipple,” is modeled after the structures in a moth’s eye and is designed to extract more light from the film.

Between 100,000 to 200,000 of the protuberances fit within a 100 x 100 micrometer square, or about the same density as in an actual moth eye. The researchers then made the sidewalls of the device rougher, improving its ability to scatter light and thus enhancing the efficiency of the scintillator.

In lab experiments, Yi and colleagues found that adding the thin film to the scintillator of an X-ray mammographic unit increased the intensity of the emitted light by as much as 175 percent compared to that produced using a traditional scintillator.

The current work, Yi says, represents a proof-of-concept evaluation of the use of the moth-eye-based nanostructures in medical imaging materials. “The moth eye has been considered one of the most exciting bio structures because of its unique nano-optical properties,” he says, “and our work further improved upon this fascinating structure and demonstrated its use in medical imaging materials, where it promises to achieve lower patient radiation doses, higher-resolution imaging of human organs, and even smaller-scale medical imaging. And because the film is on the scintillator,” he adds, “the patient would not be aware of it at all.”

Yi estimates that it will take at least another three to five years to evaluate and perfect the film, and test it in imaging devices. “We will need to work with medical imaging experts and radiologists for this to be actually used in clinical practice,” he says.

The work was done in collaboration with Professors Bo Liu and Hong Chen of Tongji University in Shanghai.

Paper: “Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures,” Optics Letters, Vol. 37, Issue 14, pp. 2808-2810 (2012).

EDITOR’S NOTE: Supporting images are available to members of the media upon request. Contact Angela Stark at astark@osa.org.

About Optics Letters

Published by the Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Alan E. Willner of the University of Southern California and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>