Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Push for High Power Femtosecond Lasers

27.07.2012
Researchers at the Laser Zentrum Hannover e.V. (LZH) are developing the world’s first 2 ìm femtosecond laser source with pulse energies in the ìJ range.

or nearly 20 years, the advantages of using ultrashort laser radiation have been known. Due to fact that the pulsed have been shortened extremely, very high peak intensities can be reached, even for low pulse energies.

The effects are significant: materials can be precisely cut and removed, without causing thermal damage to the material. This is already being used for many different applications, for example for eye surgery. Cornea transplants using the fs laser have been common place for years.

And since 2011, the systems have been used to treat cataracts. Also, industry has profited from the advantages of ultrashort pulsed laser systems. These systems have been used, for example, to produce significantly more effective solar cells, or for improving expensive wafers used for chip production.

By expanding the emission spectrum of an fs laser into the spectral range of 2 µm, but simultaneously keeping the high pulse energies, the LZH wants to open the door for completely new fields of application, such as in micro-material processing, in medical technology, or in nanotechnology. Economic success is estimated to be high, and this „eye safe“ wavelength also offers a further advantage. Safety measures which are normally expensive and place limitations on production are relatively inexpensive for applications with this laser.

The concrete goal of the work in the Laser Development Department of the LZH is to construct a compact, regenerative, ultrashort pulse amplifier, emitting in the wavelength range around 2 µm, with pulse energies up to 50 µJ and pulse durations below 500 fs. As a seed laser, the scientists use an fs oscillator based on thulium doted fibers, with an output energy of 1-2 nJ, which is then amplified to 25 nJ. Directly following regenerative amplification, non-linear frequency conversion in the wavelength range of 3 to 6 µm is induced, in an optical parametric generator or amplifier (OPG/OPA). Gallium arsenide (GaAs) or zinc germanium phosphite (ZGP) are used as non-linear crystals.

“Our goal is a 2 µm fs laser system emitting in the mid-infrared range,” explains Dr. Dieter Wandt, head of the Ultrafast Photonics Group, which is working on this laser. “These wavelengths have a great growth potential.” Wandt says that polymer processing is one important field of application. Using IR radiation, polymers can be cut or welded without using additives. For German laser manufacturers, this basic know-how should provide a decisive advantage in the international competition surrounding ultrashort laser pulses.

The activities of the LZH are par of the project „Concepts for ultrashort pulsed beam sources of the next generation – Next Generation of Ultrafast Sources” NEXUS. Funding comes from the initiative “Ultrashort pulse laser for highly precise manufacturing” of the BMBF, until 2015.Apart from the laser institute in Hannover, project partners include the Friedrich Schiller University in Jena, the Leibniz University Hannover and the Ludwig-Maximilians University in Munich.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>