Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial repulsion does not rule out subsequent attraction

13.09.2019

Scientists from Universities of Regensburg and Munich revealed intricate mysteries of chemical bonding

The Philosopher Arthur Schopenhauer formulated a metaphor called the porcupine dilemma, which explains a certain optimal distance between people. People feel alone at too large a spacing and uneasy at too close a proximity.


Transition from a weak physical bond (physisorption) to a strong chemical bond (chemisorption).

© Dr. Ferdinand Huber

Schopenhauer explained the ideal spacing using the following parable: „A number of porcupines huddled together for warmth on a cold day in winter; but, as they began to prick one another with their quills, they were obliged to disperse. However the cold drove them together again, when just the same thing happened.

At last, after many turns of huddling and dispersing, they discovered that they would be best off by remaining at a little distance from one another. In the same way the need of society drives the human porcupines together, only to be mutually repelled by the many prickly and disagreeable qualities of their nature.“ [Wikipedia]

The Physics Nobel laureate Richard Feynman reported a similar phenomenon for the very basic building blocks of matter, the atoms. His three-volume textbook „The Feynman Lectures on Physics“ starts with the presumption that in the case of some cataclysmic event eroding all human knowledge, the following sentence would contain the most useful information about nature in the shortest form: “ ...all things are made of atoms - little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another”. [Feynman Lectures on Physics, Vol. I, 1-2]

However, the nature of the interaction of atoms and molecules with surfaces is even more complex as was already found by the physicist Lenard-Jones back in 1932. In some cases, two modes of bonding can occur: a weak bonding, called physisorption and a strong bonding, called chemisorption. Physisorption makes dust stick to surfaces or allows geckos to walk on walls and ceilings without falling off. Chemisorption is ten to one hundred times stronger than physisorption.

The interplay between physisorption and chemisorption is crucial for the cleaning of exhaust gas in catalytic converters of cars and in industrial reactors that build basic chemicals by catalytic reactions. The two modes of adsorption are expressed by an energy curve that shows two minima. Those energy curves have been displayed in textbooks of physical chemistry and surface science for decades, although experimental access had been limited to the equilibrium points where physisorption and chemisorption occur.

A group of experimental physicists from the University of Regensburg (Ferdinand Huber, Julian Berwanger, Franz J. Giessibl) have been able to experimentally record the genesis of the energy curve that is involved in the transition from physisorption to chemisorption. They achieved this by attaching a CO molecule to the tip of an atomic force microscope and moving it towards a single iron atom that sits on a copper surface while recording the force that acted in the process.

The team included quantum chemists (Svitlana Polyesa, Sergiy Mankovsky, Hubert Ebert) from the Ludwig-Maximilians-Universitity Munich, who worked out the theoretical explanation. Overcoming the energetic barrier between physisorption and chemisorption requires a rearrangement of the electrons (hybridization) that make up the bonds as has been confirmed in the quantum chemical calculations.

Returning to Schopenhauer and human relationships, it is not unheard of that humans can also become highly attracted after overcoming possible initial repulsion.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Franz Gießibl
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-2105
E-Mail: franz.giessibl@ur.de

Originalpublikation:

Ferdinand Huber, Julian Berwanger, Svitlana Polesya, Sergiy Mankovsky, Hubert Ebert, Franz J. Giessibl, “Chemical Bond Formation Showing a Transition from Physisorption to Chemisorption “, Science (2019).
DOI: 10.1126/science.aay3444

Christina Glaser | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht NASA's Hubble finds water vapor on habitable-zone exoplanet for 1st time
12.09.2019 | NASA/Goddard Space Flight Center

nachricht Black hole at the center of our galaxy appears to be getting hungrier
12.09.2019 | University of California - Los Angeles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

An OLED pilot line introduces itself: From PI-SCALE to LYTEUS

13.09.2019 | Power and Electrical Engineering

Initial repulsion does not rule out subsequent attraction

13.09.2019 | Physics and Astronomy

The working of a molecular string phone

13.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>