Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Technology for Space, Climate and Security

11.03.2019

In aerospace, infrared technology provides information about atmospheric compositions of our planet and other exoplanets. Earth observation satellites use detectors to study the climate by using infrared spectroscopy to detect greenhouse gas emissions or other chemical substances in real time. Furthermore, infrared lasers have also become an indispensable tool for medical diagnostics and therapies. To promote these studies and developments, specialists of IR photonics and optoelectronics will meet at the 44th Freiburg Infrared Colloquium. The two-day workshop takes place from March 19-20 at the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg, Germany.

More than 100 international representatives from universities, research institutes and industry will partake in the exchange and knowledge transfer at the biannual Infrared Colloquium.


© Fraunhofer IAF

Miniaturisierter, breitbandig spektral abstimmbarer Quantenkaskadenlaser mit Emissionswellenlängen im mittleren Infrarot-Bereich.

»This year’s program includes more than 40 specialist talks on the newest research results, optimized production processes of devices, product developments and applications in different industrial sectors«, says chairman Dr. Robert Rehm.

Scientists of Fraunhofer IAF will present their developments in the field of photodetectors and quantum cascade lasers. Seven invited speakers will speak about pioneering topics from the industry.

Space missions and trace gas analysis

Infrared detectors are an indispensable tool for earth observation from space and for studies of the processes in our solar system and beyond. Olivier Saint-Pé (Airbus Defence and Space) will give a talk about the criteria and requirements that the next generation of IR sensors and instruments needs to meet for future space missions.

Another component from infrared technology has already made it to space. The interband cascade laser (»IC laser«) was successfully used by the NASA Rover »Curiosity« to detect methane on Mars. The high-performance IC lasers are characterized by their low energy consumption and are being used for various spectroscopic measurement applications in process and environmental analysis.

In his talk, Prof. Dr. Rui Q. Yang (University of Oklahoma), who co-developed the concept of IC lasers in 1994, will review the unique characteristics of this technology and its current state of the art.

The detection of chemical substances is also the topic of Dr. Johannes Paul Waclawek’s (TU Wien), who will introduce new trace gas sensing methods in the mid-infrared. Gases often pose a threat to human health and the environment, which is why a constant surveillance of smallest traces is necessary.

With the help of indirect photoacoustic or photothermal measuring methods, emission, industry and process gases can be detected precociously, and people and the environment can be protected from harm.

High-resolution and high-performance thermal imaging cameras

Scientists of Fraunhofer IAF will present various current trends in the field of semiconductor lasers and photodetectors. From the latter, Dr. Frank Rutz shows the newest developments of high-performance matrix and single detectors based on antimonic type-II superlattices and indium gallium arsenide (InGaAs).

In the shortwave infrared range, highly sensitive InGaAs based cameras allow for night vision systems that capitalize on atmospheric OH lights. »The superlattice detectors for the mid- and longwave infrared developed at Fraunhofer IAF are unique worldwide.

They allow for high-performance thermal imaging cameras with high spatial resolution which either operate in the classic monospectral mode or have the capability of color vision in the infrared«, explains Rehm, head of the business unit »Photodetectors« at Fraunhofer IAF.

Real-time surveillance with spectroscopy

In the field of semiconductor lasers, Fraunhofer IAF develops optically pumped semiconductor disk lasers for medical applications and quantum cascade lasers for spectroscopic sensors. Spectroscopy in the mid-infrared is of high importance for the identification of numerous chemical compounds. Every chemical substance absorbs a distinct amount of infrared light, which in turn can be identified like a human fingerprint via optical methods.

Real-time surveillance in this spectral range provides valuable information and can be used for a wide range of applications: For instance, for medical purposes, cancer diseases could be diagnosed earlier and the food and pharmaceutical industry could use it to ensure their product quality.

The contact-free detection of explosives and toxic substances in real time helps with the on-site detection of hazardous substances to prevent terroristic attacks or to investigate accidents at industrial plants. Dr. Marko Härtelt’s contribution will present the newest results in the field of quantum cascade lasers that have been developed in a joint project between Fraunhofer IAF and Fraunhofer IPMS.

About the Freiburg Infrared Colloquium

Already for the 44th time since its founding in 1971, the Freiburg Infrared Colloquium will bring reknown international participants from different economic and scientific sectors together. The two-day workshop offers a unique forum for discussions of current and relevant issues for the development of infrared technology as well as their use in various sectors. The workshop’s aim is the exchange between different players, the strengthening of international collaboration and the promotion of the research and development of infrared technology.

Originalpublikation:

https://www.iaf.fraunhofer.de/en/media-library/press-releases/ir-colloquium2019....

Weitere Informationen:

https://www.iaf.fraunhofer.de/en.html

Anne-Julie Maurer | Fraunhofer-Institut für Angewandte Festkörperphysik IAF
Further information:
http://www.iaf.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Ion experiment aces quantum scrambling test
08.03.2019 | Joint Quantum Institute

nachricht When semiconductors stick together, materials go quantum
08.03.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

Im Focus: Binding with consequences

Researchers from Freiburg and Ulm discover mechanism through which bacteria attack white blood cells

A research team led by Prof. Dr. Winfried Römer and Dr. Elias Hobeika from the University of Freiburg and the University Medical Center in Ulm has discovered a...

Im Focus: 'Immunizing' quantum bits so that they can grow up

New material enhances supercurrent in topological-insulator nanoribbon Josephson junctions

Quantum computers will process significantly more information at once compared to today's computers. But the building blocks that contain this information -...

Im Focus: Researchers identify how the bacterial replicative helicase opens to start DNA replication process

The new discovery may prove useful in developing a novel class of antibiotics and designing molecular nanodevices

DNA replication is a complex process in which a helicase ring separates the DNA molecule's two entwined and encoded strands, allowing each to precisely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

 
Latest News

Infrared Technology for Space, Climate and Security

11.03.2019 | Physics and Astronomy

EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers

11.03.2019 | Information Technology

Thawing Arctic Permafrost: One of the Five Largest Threats to the Environment

11.03.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>