Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving on the amazing: Ames Laboratory scientists seek new conductors for metamaterials

25.04.2012
Scientists at the U.S. Department of Energy’s Ames Laboratory have designed a method to evaluate different conductors for use in metamaterial structures, which are engineered to exhibit properties not possible in natural materials. The work was reported this month in Nature Photonics.

Cloaking devices that hide planes from RADAR, microscopes that can see inside a single cell, and miniature antennae that measure only a few millimeters all sound like parts of a science fiction movie. But, within the span of the decade since they began their work, Ames Laboratory physicist Costas Soukoulis and his research team have moved these and other innovations from the realm of fiction closer to reality.


A model of a three-dimensional metamaterial. Ames Laboratory scientists developed a method to evaluate different conductors for use in metamaterial structures.

“Metamaterials have a few fundamentally new properties that may allow for many new applications,” said Soukoulis. For instance, natural materials refract light to the opposite side of the incidence normal, while metamaterials can refract light to the same side (left-handed materials), allowing imaging with a flat lens. Metamaterials are also capable of absorbing all light that hits them, reflecting none of it, creating perfect absorbers. The materials can even slow light. And what makes these properties even more interesting is that they can be adjusted to the needs of particular technologies.

“Usually, materials scientists are presented with a material, determine its properties and only then come up with a use for the material. But metamaterials work in the opposite direction,” said Soukoulis. “With metamaterials, we can think about what technology we’d like and what properties we want – perhaps properties unheard of before – and design the materials to exhibit those properties.”

Take, for example, the goal of creating super-efficient devices to harvest sunlight in solar energy products. Ideal materials for such a device would absorb 100 percent of the solar spectrum.

“In metamaterials, we can design both their magnetic and electric responses,” said Thomas Koschny, Ames Laboratory associate scientist. “Therefore, we can control the reflection at the interface of the metamaterial, which you cannot easily do in normal materials. In regular materials, particularly with the types of waves like light, materials have only an electric response, and they are always reflective. But, in a metamaterial, we can arrange the parts of the material so that the electric response equals the magnetic response, and the surface is reflection free and all waves go into the material.”

Other possible applications are “superlenses” that would allow us to use visible light to see molecules, like DNA molecules, in detail and devices that store large amounts of data optically. And many other potential uses exist because, unlike in natural materials, metamaterials can be designed to work at target frequencies, at least in principle, from radio frequencies to visible light.

But with such great potential also comes several challenges, some of which Soukoulis’ team have already made significant progress toward meeting. In 2006, the researchers were the first to fabricate a left-handed metamaterial, one with a negative index of refraction, in waves very close to visible light. In 2007, the group designed and fabricated the first left-handed metamaterial for visible light, and they recently fabricated chiral metamaterials that have giant optical activity.

Another challenge is reducing energy losses in metamaterials. Energy is lost by conversion to heat in their metallic components. In results reported in Nature Photonics this month, Soukoulis and his team evaluated a variety of conducting materials – including graphene, high-temperature superconductors and transparent conducting oxides.

“Graphene is a very interesting material because it is only a single atom thick and it is tunable, but unfortunately it does not conduct electrical current well enough to create an optical metamaterial out of it,” said Philippe Tassin, a postdoctoral research associate at Ames Laboratory. “We also thought high-temperature superconductors were very promising, but we found that silver and gold remain the best conductors for use in metamaterials.”

While neither graphene nor superconductors will immediately fix losses in metamaterials, Soukoulis’ work provides a method for evaluating future candidates to replace gold or silver that will help harness the enormous potential of metamaterials.

“Metamaterials may help solve the energy problems America is facing,” said Soukoulis. “There’s no shortage of new ideas in the field of metamaterials, and we’re helping make progress in understanding metamaterials’ basic physics, applied physics and possible applications.”

The research was funded by DOE’s Office of Science.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Breehan Gerleman Lucchesi | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>