Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved interface for a quantum internet

15.01.2015

A quantum network requires efficient interfaces over which information can be transferred from matter to light and back. In the current issue of Physical Review Letters, Innsbruck physicists led by Rainer Blatt and Tracy Northup show how this information transfer can be optimized by taking advantage of a collective quantum phenomenon.

Quantum computers are no longer just a theoretical concept. In recent years, researchers have assembled and successfully tested the building blocks for a future quantum computer in the laboratory.


The experimental apparatus in which the researchers demonstrate a quantum interface.

Photo: IQOQI/Lackner


Two particles are positioned between highly reflective mirrors and entangled with one another by means of a laser.

Graphic: U. Innsbruck

More than a dozen candidate technologies are currently being studied; of these, ion traps are arguably the most advanced. In an ion trap, single atoms can be confined and precisely controlled by means of lasers. This idea was developed by theorists Ignacio Cirac and Peter Zoller, and a team of Innsbruck experimental physicists under Rainer Blatt has been at the forefront of its implementation.

Based at the University of Innsbruck’s Institute for Experimental Physics, the team first demonstrated in 2013 that quantum information stored in a trapped ion can be deterministically mapped onto a photon, that is, a quantum of light. Thus, they were able to construct an interface between quantum processors and optical fiber-based communication channels. Now the physicists have improved this interface, making use of so-called superradiant states.

A reliable interface

“In order to build a quantum network with trapped ions, we need an efficient interface that will allow us to transfer quantum information from ions to photons,” explains Tracy Northup, project leader in Rainer Blatt’s team. “In our interface, we position two ions between two highly reflective mirrors, which form an optical resonator. We entangle the ions with one another and couple both of them to the resonator.”

The collective interaction between the particles and the resonator can now be tuned in order to enhance the creation of single photons. “This is known as a superradiant state,” explains Bernardo Casabone, the article’s first author. In order to demonstrate that the interface is well suited for quantum information processing, the researchers encode a quantum state in the entangled particles and transfer this state onto a single photon.

Because of the superradiant interaction, the photon is generated almost twice as quickly as in their previous experiment. “Thanks to superradiance, the process of information transfer from the particle to the photon essentially becomes more robust,” Casabone emphasizes. As a consequence, the technical requirements for the construction of accurate interfaces may be relaxed.

Read–write capabilities for a quantum memory
In the same experiments on light–matter interactions, the Innsbuck physicists were also able to create so-called subradiant states. Here, the emission of a photon is suppressed rather than enhanced. “These states are also interesting because the stored information becomes invisible to the resonator, and in that sense, it’s protected,” says Northup. As a result, one can imagine that by switching between sub- and superradiant states, quantum information can be stored in ions and retrieved as photons. In a future quantum computer, such addressable read–write operations may be achieved for a quantum register of trapped ions.

The authors are based at the University of Innsbruck and at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. Their research was supported by the Austrian Science Funds (FWF), the European Union, and Tirolean industry.

Publication: Enhanced quantum interface with collective ion-cavity coupling. B. Casabone, K. Friebe, B. Brändstatter, K. Schüppert, R. Blatt, and T. E. Northup. Phys. Rev. Lett. 114, 023602
http://dx.doi.org/10.1103/PhysRevLett.114.023602

Physics Synopsis: A Cavity Just for Two
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.114.023601

For further information, contact:
Tracy Northup
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-52463
E-Mail: tracy.northup@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://quantumoptics.at - Quantum Optics and Spectroscopy group
http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik, Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>