Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Impossible Star

01.09.2011
Astronomers observe a 13-billion-year-old star with an unusual chemical composition

A team of European astronomers led by a scientist of Heidelberg University has discovered a star that according to standard astronomical thinking should not be able to exist: it is made up almost entirely of hydrogen and helium with only minute traces of other elements.


An impossible star: A team of European astronomers has investigated the faint and extremely metal-poor star SDSS J102915+172927. It dates back to the early days of the Universe and is probably over 13 billion years old. Source: ESO/Digitized Sky Survey 2

In terms of the generally accepted theory of star formation, this unusual chemical composition puts the star dating from the early stages of the Universe into a “forbidden zone”. “For all we know, it should never have come into being in the first place,” says Dr. Elisabetta Caffau of Heidelberg University’s Centre for Astronomy (ZAH). The findings of the investigation, which was carried out with the Very Large Telescope of the European Southern Observatory (ESO), will be published in “Nature” on 1 September 2011.

The extremely faint star in the Leo constellation goes by the cumbersome designation “SDSS J102915+172927”. It was catalogued in the course of the Sloan Digital Sky Survey (SDSS), an international project scanning certain sectors of the sky with spectral lines. The figures in the designation refer to its position in the sky. The star has slightly less mass than the Sun and is probably over 13 billion years old. According to the observations of the European research team, SDSS J102915+172927 has the lowest proportion of chemical elements heavier than helium of any star investigated so far.

The properties of the star were investigated with the two spectrographs X-Shooter and UVES of the ESO’s Very Large Telescope (VLT) in Chile. With these devices, the light of celestial bodies can be split into its colour components. Spectrum analysis, developed by Gustav Kirchhoff and Robert Bunsen in the mid-19th century in Heidelberg, is used to determine the relative proportion of chemical elements in a star’s atmosphere. This is how the astronomers established that the metal content of SDSS J102915+172927 is 20,000 times lower than that of the Sun. In their first measurements the astronomers spotted just one chemical element heavier than helium: calcium. It was only through additional observation that the scientists from France, Germany and Italy were able to identify other metals.

“The generally accepted theory states that because of their low mass and the extremely small proportion of heavy elements, stars like this one should not be able to exist at all,” says Dr. Caffau, who conducts research at the Königstuhl State Observatory of Heidelberg University’s Centre for Astronomy. “Received thinking suggests that in this case the gas and dust clouds giving rise to such a star could not have condensed sufficiently for the purpose. This is the first time a star has been discovered in the ‘forbidden zone’ of star formation and it was a big surprise for us. Now astrophysicists will have to rethink some of their models for the formation of stars.” Dr. Caffau is the lead author of the study published in “Nature”.

Cosmologists believe that, along with traces of lithium, the lightest elements hydrogen and helium came into existence shortly after the Big Bang. Almost all heavier elements were formed a great deal later, either through fusion processes in the interior of stars or in the course of supernova explosions at the end of a star’s life. After the explosion the metal-rich material mixes with the interstellar medium, i.e. the matter in the space between the stars. The next generation of stars is formed from this metal-enriched material. The metal content of the newly formed stars is higher than in the previous generation. “This means that the proportion of metals also tells us how old a star is, or rather how many generations of stars the material it consists of has been through,” says Dr. Caffau. “The fact that SDSS J102915+172927 is extremely metal-poor means that this star must stem from the early days of the Universe. In fact, it may be one of the oldest stars ever found.”

Another surprise is the paucity of lithium in SDSS J102915+172927, as according to Dr. Caffau, a star of this age should have more or less the same chemical composition as the Universe just after the Big Bang. But the star’s lithium content is fifty times smaller than cosmological calculations on element formation would lead us to expect. For the European astronomer team, it is a mystery how the lithium that must have formed at the beginning of the Universe was destroyed in this particular star. But the scientists are convinced that this strange star is not alone. “We have a whole series of candidates whose metal content may be just as low as that of SDSS J102915+172927, if not lower,” says Dr. Caffau. “We are planning to observe them with the VLT to see if this is the case.” For the astronomers, it is the next step towards exploring the very first generation of stars.

For more information, go to http://www.lsw.uni-heidelberg.de/projects/galactic_archaeology.

Original publication:
E. Caffau, P. Bonifacio, P. François, L. Sbordone, L. Monaco, M. Spite, F. Spite, H.-G. Ludwig, R. Cayrel, S. Zaggia, F. Hammer, S. Randich, P. Molaro, V. Hill: An extremely primitive halo star in the Galactic halo, Nature (1 September 2011)

Contact:

Dr. Guido Thimm
Zentrum für Astonomie der Universität Heidelberg (ZAH)
phone: +49 6221 541805
thimm@ari.uni-heidelberg.de
Dr. Elisabetta Caffau
Zentrum für Astronomie der Universität Heidelberg (ZAH)
phone: +49 6221 541787
e.caffau@lsw.uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

nachricht First diode for magnetic fields
21.11.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>