Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immigrant Sun: Our star could be far from where it started in Milky Way

17.09.2008
A long-standing scientific belief holds that stars tend to hang out in the same general part of a galaxy where they originally formed. Some astrophysicists have recently questioned whether that is true, and now new simulations show that, at least in galaxies similar to our own Milky Way, stars such as the sun can migrate great distances.

What's more, if our sun has moved far from where it was formed more than 4 billion years ago, that could change the entire notion that there are parts of galaxies – so-called habitable zones – that are more conducive to supporting life than other areas are.

"Our view of the extent of the habitable zone is based in part on the idea that certain chemical elements necessary for life are available in some parts of a galaxy's disk but not others," said Rok Roškar, a doctoral student in astronomy at the University of Washington.

"If stars migrate, then that zone can't be a stationary place."

If the idea of habitable zone doesn't hold up, it would change scientists' understanding of just where, and how, life could evolve in a galaxy, he said.

Roškar is lead author of a paper describing the findings from the simulations, published in the Sept. 10 edition of the Astrophysical Journal Letters. Co-authors are Thomas R. Quinn of the UW, Victor Debattista at the University of Central Lancashire in England, and Gregory Stinson and James Wadsley of McMaster University in Canada. The work was funded in part by the National Science Foundation.

Using more than 100,000 hours of computer time on a UW computer cluster and a supercomputer at the University of Texas, the scientists ran simulations of the formation and evolution of a galaxy disk from material that had swirled together 4 billion years after the big bang. (See a simulation video at http://www.astro.washington.edu/roskar/astronomy/12M_hr_rerun_angle.mpg.)

The simulations begin with conditions about 9 billion years ago, after material for the disk of our galaxy had largely come together but the actual disk formation had not yet started. The scientists set basic parameters to mimic the development of the Milky Way to that point, but then let the simulated galaxy evolve on its own.

If a star, during its orbit around the center of the galaxy, is intercepted by a spiral arm of the galaxy, scientists previously assumed the star's orbit would become more erratic in the same way that a car's wheel might become wobbly after it hits a pothole.

However, in the new simulations the orbits of some stars might get larger or smaller but still remain very circular after hitting the massive spiral wave. Our sun has a nearly circular orbit, so the findings mean that when it formed 4.59 billion years ago (about 50 million years before the Earth), it could have been either nearer to or farther from the center of the galaxy, rather than halfway toward the outer edge where it is now.

Migrating stars also help explain a long-standing problem in the chemical mix of stars in the neighborhood of our solar system, which has long been known to be more mixed and diluted than would be expected if stars spent their entire lives where they were born. By bringing in stars from very different starting locations, the sun's neighborhood has become a more diverse and interesting place, the researcher said.

Such stellar migration appears to depend on the galaxy having spiral arms that twist their way through the galaxy, as are present in the Milky Way, Roškar said.

"Our simulated galaxy is very idealized in the formation of the disk, but we believe it is indicative of the formation of a Milky Way-type of galaxy," he said. "In a way, studying the Milky Way is the hardest thing to do because we're inside it and we can't see it all. We can't say for sure that the sun had this type of migration."

However, there is recent observational evidence that such migration might be occurring in other galaxies as well, he said.

Roškar noted that the researchers are not the first to suggest that stars might be able to migrate great distances across galaxies, but they are the first to demonstrate the effects of such migrations in a simulation of a growing galactic disk.

The findings are based on a few runs of the simulations, but it is expected additional runs using the same parameters and physical properties would produce largely the same results.

"When you swirl cream into a cup of coffee, it will rarely look exactly the same twice, but the general process, and the resulting taste, is always the same," said Wadsley, the team member from McMaster University.

The scientists plan to run a range of simulations with varying physical properties to generate different kinds of galactic disks, and then determine whether stars show similar ability to migrate large distances within different types of disk galaxies.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Immigrant Sun Migrating stars Orbit galaxies stellar migration

More articles from Physics and Astronomy:

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

nachricht View of the Earth in front of the Sun
19.06.2019 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>