Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illuminating the path for super-resolution imaging with improved rhodamine dyes

03.12.2019

DUT and SUTD researchers developed a new strategy that enhances the brightness and clarity of sub-cellular structures when dyed with novel rhodamine fluorophores, laying the ground for the advancement of super-resolution microscopes

Recent years have witnessed a rapid evolution of advanced fluorescence imaging techniques, such as single-molecule localization microscopy (SMLM) that allows for unprecedented resolution beyond the Abbe diffraction limit of the optical microscope.


Researchers from DUT and SUTD developed a new class of quaternary piperazine-substituted rhodamines with outstanding quantum yields (Φ = 0.93) and superior brightness (ε × Φ = 8.1 × 104 L·mol-1·cm-1), for imaging cell membranes and lysosomes in biological cells with super-resolution microscopy.

Credit: SUTD and DUT

However, insufficient brightness of fluorophores has posed a major bottleneck for the further advancement of this field and caused significant constraints to in vivo cellular dynamics studies.

Owing to the widespread applications of rhodamines in many super-resolution imaging studies, significant efforts have been taken to further enhance their performances.

Researchers from Dalian University of Technology (DUT) and the Singapore University of Technology and Design (SUTD) have developed a novel strategy for chemists to achieve brighter fluorescence and clearer resolution with the use of a new class of rhodamines (see image).

This means that chemists and scientists can benefit directly from a wider colour palette that they can use during biological imaging. This will help them to distinguish various intricate cellular structures for more precise analysis that was not possible before. Their research paper has been published in ACS publications.

The researchers also successfully demonstrated that this strategy was compatible with other families of fluorophores, resulting in substantially increased fluorescence brightness and "photon budget". The increased "photon budget" is critical to improve the resolution and clarity of super-resolution microscopes.

The key to this strategy was the combination of the mechanistic understanding of the photophysical process in these fluorophores (namely, twisted intramolecular charge transfer), and the tailed molecular design strategy to inhibit this detrimental process via an electronic inductive effect.

"With the close integration of computational and experimental studies to understand the structure-property relationships of fluorophores, the dye chemistry is currently transforming from trial-and-error to design-based molecular engineering. We expect more high-performance dyes will be created soon and thus greatly aiding the development of super-resolution microscopy," said Assistant Professor Liu Xiaogang from SUTD.

"In addition to brightness, other characteristics such as photostability and photo-activation properties need to be optimized to meet the stringent requirements of SMLM. We look forward to working closely with computational chemists to further advance the rational design of dyes for super-resolution imaging," added Professor Xiao Yi from DUT.

Media Contact

Jessica Sasayiah
jessica_sasayiah@sutd.edu.sg
656-499-4823

http://www.sutd.edu.sg 

Jessica Sasayiah | EurekAlert!
Further information:
https://pubs.acs.org/doi/10.1021/jacs.9b04893
http://dx.doi.org/10.1021/jacs.9b04893

More articles from Physics and Astronomy:

nachricht Electron correlations in carbon nanostructures
03.12.2019 | Christian-Albrechts-Universität zu Kiel

nachricht A new theory for how black holes and neutron stars shine bright
29.11.2019 | Columbia University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

5G and AI – Synergy in the Digital Age

03.12.2019 | Information Technology

Electron correlations in carbon nanostructures

03.12.2019 | Physics and Astronomy

A Freiburg research team deciphers how stem cells decide their identity

03.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>