Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois team finds Wigner crystal -- not Mott insulator -- in 'magic-angle' graphene

25.09.2018

Recently, a team of scientists led by Pablo Jarillo-Herrero at the Massachusetts Institute of Technology (MIT) created a huge stir in the field of condensed matter physics when they showed that two sheets of graphene twisted at specific angles--dubbed "magic-angle" graphene--display two emergent phases of matter not observed in single sheets of graphene. Graphene is a honeycomb lattice of carbon atoms--it's essentially a one-atom-thick layer of graphite, the dark, flaky material in pencils.

In two articles published online in March 2018 and appearing in the April 5, 2018 issue of the journal Nature, the team reported the twisted bilayer graphene (tBLG) exhibits an unconventional superconducting phase, akin to what is seen in high-temperature superconducting cuprates.


These are proposed Wigner crystals for magic-angle bilayer graphene. In Figure A, the criterion for observing this lattice structure is not satisfied experimentally, resulting in metallic transport when a single electron occupies a moiré cell. Figures B and C show the insulating state, explaining the experimental observation when 2 or 3 electrons are in a moiré cell.

Credit: Philip Phillips, University of Illinois at Urbana-Champaign

This phase is obtained by doping (injecting electrons into) an insulating state, which the MIT group interpreted as an example of Mott insulation. A joint team of scientists at UCSB and Columbia University has reproduces the remarkable MIT results. The discovery holds promise for the eventual development of room-temperature superconductors and a host of other equally groundbreaking applications.

Researchers at the University of Illinois at Urbana-Champaign have recently shown that the insulating behavior reported by the MIT team has been misattributed. Professor Philip Phillips, a noted expert in the physics of Mott insulators, says a careful review of the MIT experimental data by his team revealed that the insulating behavior of the "magic-angle" graphene is not Mott insulation, but something even more profound--a Wigner crystal.

"People have been looking for clear examples of Wigner crystals since Wigner first predicted them in the 1930s," Phillips asserts. "I think this is even more exciting than if it were a Mott insulator."

Lead author of the U of I study, graduate student Bikash Padhi, explains, "When one sheet of graphene is twisted on top of another, moiré patterns emerge as a result of the offset in the honeycomb structure. By artificially injecting electrons into these sheets, the MIT group obtained novel phases of matter which can be understood by studying these extra electrons on the bed of this moiré pattern. By increasing the electron density, the MIT group observed an insulating state when 2 and 3 electrons reside in a moiré unit cell. They argued this behavior is an example of Mott physics."

Why can't it be Mott physics?

Phillips explains, "Mott insulators are a class of materials that should be conductive if electronic interactions are not taken into account, but once that's taken into account, are insulating instead. There are two primary reasons why we suspect the tBLG does not form a Mott insulator--the observed metal-insulator transition offers only one characteristic energy scale, whereas conventional Mott insulators are described by two scales. Next, in the MIT report, in contrast to what one expects for a Mott system, there was no insulator when there was only 1 electron per unit cell. This is fundamentally inconsistent with Mottness."

The accompanying figure displays the crystalline states that explain this data.

What is a Wigner crystal?

To understand Wigner crystals, Padhi offers this analogy: "Imagine a group of people each inside a large orb and running around in a closed room. If this orb is small they can move freely but as it grows bigger one may collide more frequently than before and eventually there might be a point when all of them are stuck at their positions since any small movement will be immediately prevented by the next person. This is basically what a crystal is. The people here are electrons, and the orb is a measure of their repulsion."

Phillips credits Padhi with providing the impetus for the study.

These results were pre-published online in the journal Nano Letters in the article, "Doped Twisted Bilayer Graphene near Magic Angles: Proximity to Wigner Crystallization not Mott Insulation," on September 5, 2018, with the final official redaction to be included in the journal's October 2018 issue.

This research was funded by the Center for Emergent Superconductivity, a Department of Energy-funded Energy Frontier Research Center, and by the National Science Foundation. The conclusions presented are those of the researchers and not necessarily those of the funding agencies.

Philip W. Phillips | EurekAlert!

More articles from Physics and Astronomy:

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

nachricht Ultra ultrasound to transform new tech
17.01.2019 | Swansea University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>