Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icy giant planets in the laboratory

27.03.2019

HZDR researchers use plastics to better understand what happens inside planets

Giant planets like Uranus and Neptune may contain much less free hydrogen than previously assumed. Researchers from the German Helmholtz-Zentrum Dresden-Rossendorf (HZDR) drove shock waves through two different types of plastic to reach the same temperatures and pressures present inside such planets, and observed the behavior using ultra-strong X-ray laser pulses. Unexpectedly, one of these plastics kept its crystalline structure even at the most extreme pressures reached. Since the icy giant interiors are made up of the same components as the plastic, planetary models may need to be partially reconsidered, as reported in the journal Scientific Reports (doi: 10.1038/s41598-019040782-5).


Even under extremely high pressure, such as those in the interior of Neptune or Uranus, there are stable crystal structures of carbon (orange) and hydrogen (gray). This discovery by HZDR researchers reveals new possibilities for the inner structure of the ice giants.

Credit: HZDR / J. Vorberger

Carbon and hydrogen are among the most abundant elements in the universe, and are a major constituent of icy giant planets such as Uranus and Neptune. In the outer atmosphere, these atoms are found in the form of methane gas, but deeper inside the high pressure can lead to more complex hydrocarbon structures. Predicting the phases and structures that material takes at these conditions is one of the big questions of planetary research.

In order to better understand the structure of the ice giants, an international team led by the two HZDR researchers Dr. Nicholas Hartley and Dr. Dominik Kraus investigated two types of plastic in a laboratory experiment: polystyrene and polyethylene. These materials are similar in chemistry to the hydrocarbon inside the planets. At the SLAC National Accelerator Laboratory in the US, the scientists exposed the samples to conditions predicted to be present around ten thousand kilometers below the surface of Neptune and Uranus. At this depth, the pressure is almost as high as in the core of the earth and two million times higher than the atmospheric pressure on the earth's surface.

Reaching extremely high pressures

At such high pressures and temperatures, the only possible structure that the researchers expected was diamond, or that the samples would be melted. Instead, they observed stable hydrocarbon structures up to the highest pressures reached, but only for the polyethylene samples. "We were very surprised by this result," says Hartley. "We did not expect the different initial state to make such a big difference at such extreme conditions. It's only recently, with the development of brighter X-ray sources, that we're able to study these materials. We were the first to think that it might be possible - and it was."

Since the extreme conditions inside the ice giants on Earth can only be reached for a brief moment, the researchers need lightning-fast measurement methods. There are only a handful of ultrafast X-ray laser facilities worldwide, and time for measurements is rare and highly demanded. Kraus and Hartley were awarded a total of three twelve hour shifts for their experiments, and so had to use every minute to carry out as many measurement runs as possible. The actual moment where they shock the sample and probe with the X-ray laser takes only a few billionths of a second.

An unexpected structure appears

Even during the experiments, the researchers were able to recognize initial results: "We were very excited because, as hoped, polystyrene formed diamond-like structures of carbon. For polyethylene, however, we saw no diamonds for the conditions reached in this experiment. Instead, there was a new structure that we could not explain at first", Hartley recalls. By comparing the data with previous results at lower pressures, they identified it as a stable structure of polyethylene, which had been seen at five times lower pressure, and only at ambient temperatures.

The discovery of the research team demonstrates how important it is to better characterize the temperature and pressure conditions inside the ice giants, and the chemistry that these lead to, in order to understand their structure and physical properties. Models of Uranus and Neptune assume that the unusual magnetic fields of these planets may originate from free hydrogen, which these results could imply is less common than expected. In the future, the researchers want to use mixtures including oxygen, in order for their experiments to better match the chemistry inside the planets.

The researchers from HZDR were joined by scientists from the SLAC National Accelerator Laboratory, the Osaka University, the TU Dresden, the TU Darmstadt, the GSI Helmholtzzentrum fuer Schwerionenforschung, the Lawrence Livermore National Laboratory, the University of California in Berkeley, the University of Warwick, the European XFEL, LULI at the École Polytechnique in Paris and the University Rostock.

###

Publication:

N.J. Hartley, S. Brown, T.E. Cowan, E. Cunningham, T. Döppner, R.W. Falcone, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, A. Laso Garcia, D.O. Gericke, S.H. Glenzer, E. Granados, P.A. Heimann, H.J. Lee, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, M. Rödel, K. Rohatsch, A.M. Saunders, M. Schölmerich, M. Schörner, A.K. Schuster, P. Sun, T. van Driel, J. Vorberger, D. Kraus: Evidence for crystalline structure in dynamically compressed polyethylene up to 200 GPa, in Scientific Reports, 2019 (DOI: 10.1038/s41598-019-40782-5)

More information:

Dr. Nicholas Hartley
Institute of Radiation Physics at HZDR
Phone: +49 351 260-3634 | Email: n.hartley@hzdr.de

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | Mobile: +49 175 874 2865 | Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany | http://www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

* How can energy and resources be utilized in an efficient, safe, and sustainable way?

* How can malignant tumors be more precisely visualized, characterized, and more effectively treated?

* How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources.

HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Media Contact

Simon Schmitt
s.schmitt@hzdr.de
49-351-260-3400

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=0

Simon Schmitt | EurekAlert!
Further information:
https://www.hzdr.de/presse/eisriesen_labor
http://dx.doi.org/10.1038/s41598-019040782-5

More articles from Physics and Astronomy:

nachricht It’s closeness that counts: how proximity affects the resistance of graphene
28.01.2020 | Georg-August-Universität Göttingen

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>