Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice on the spin liquid

11.06.2018

Researchers from the Institute of Physics in Augsburg report on the coexistence of liquid and frozen states of electron spins in a magnetic compound under pressure.

Macroscopic analogies go a long way in elucidating magnetic phenomena. Magnetic moments in solids can be usually thought of as being in the crystalline (ordered) or gaseous (disordered) states. Intermediate liquid-like states prove to be rare.


Like ice and water coexist in the Arctic, frozen and dynamic spins cast the unusual magnetic state of pressurized -Li2IrO3 above 1.4 GPa manifesting a novel regime of the spin-liquid physics.

Kathryn Hansen / NASA photo / Alaska Dispatch

The researchers from the Chair of Experimental Physics VI/EKM in Augsburg, in collaboration with the University of Bayreuth, IFW Dresden, and Paul Scherrer Institute (Switzerland), report in Physical Review Letters on a novel liquid-like state intermixed with static spins, a magnetic analog of a freezing liquid.

Three common states of matter – gas, liquid, and solid – have close analogs in magnetism. At high temperatures, magnetic moments fluctuate randomly, similar to molecules in gas. At low temperatures, atoms in crystals become ordered, and so do magnetic moments that produce magnetic order, with ferromagnets being a prominent example.

The analogy between ordinary and magnetic liquids is less straight-forward, because ordinary liquids solidify upon cooling, whereas the most interesting magnetic (spin) liquids are those that do not. They preserve spin dynamics down to zero temperature, but a less direct analogy with ordinary liquids still exists. Crystalline solids are good construction materials.

Just like water ice can be carved into ice sculptures, ferromagnets are used to build large-scale devices, such as electric motors. In contrast, liquid water is not a material to build from, but it is central to life, whereas spin liquids can be vital to new technologies, thanks to their special properties that no other system exhibits.

Routes to the spin liquid

Spin liquids are notoriously hard to find. Theory suggests several recipes, but only a few of them made their way into the lab. In 2006, Alexei Kitaev from Caltech conceived a special magnetic model that hosts a new class of spin-liquid states having properties needed for topological quantum computing and novel information technologies. Many groups rushed to realize his scenario experimentally.

To their dismay, even those magnets that contained all necessary ingredients of the Kitaev model failed to show the anticipated spin-liquid state, i.e., at low temperatures the magnetic moments formed the unwanted “crystalline” long-range-order.

Put some pressure

The team from Augsburg could overcome this difficulty by applying pressure. “Pressure tweaks the atomic positions and changes interactions between the atoms. Magnetic interactions are especially sensitive to compression”, says Dr. Alexander Tsirlin, the group leader at the Chair of Experimental Physics VI/EKM in Augsburg. The group led by Tsirlin and Prof. Philipp Gegenwart chose one of the candidate Kitaev materials, -polymorph of the ternary oxide Li₂IrO₃, and used pressures of about 1.5 GPa, which is 15,000 times atmospheric pressure and equivalent to loading the weight of 15 tons onto a surface of 1 cm2.

Several experiments were performed. A miniature pressure cell was placed inside the magnetometer for a direct measurement of the sample magnetization. Additionally, the sample was bombarded with short-lived positively charged elementary particles, muons, which probe the development of the local magnetic field. The result of these experiments was unexpected. While the magnetic long-range order was suppressed, and the liquid-like state of spins appeared, it happened to coexist with frozen spins. The group interpreted this result as the formation of ice on the spin liquid.

Icing or Icebergs?

The freezing of a spin liquid can be caused by imperfections of the material, but that does not seem to be the case here. The group performed a meticulous characterization of the crystal structure before, during, and after the pressure treatment, and they did not notice any defects developing. “The coexistence of dynamic and static spins seems to be generic for pressurized -Li₂IrO₃”, says Prof. Philipp Gegenwart, head of the Chair of Experimental Physics VI/EKM. “What we don’t know yet is whether static spins form clusters, like icebergs in the ocean, or encompass the regions of the spin liquid, like ice covering the water surface,” caveats Dr. Tsirlin. “The spin liquid we got seems different from the one predicted by Kitaev. We are now in touch with theorists and seek to analyze further implications of this novel mixed state.”

Publication:
M. Majumder, R.S. Manna, G. Simutis, J.C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P.K. Biswas, E. Bykova, N. Dubrovinskaia, L.S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A.A. Tsirlin, and P. Gegenwart, Breakdown of magnetic order in the pressurized Kitaev iridate β-Li₂IrO₃, Phys. Rev. Lett. 120, 237202 (2018); http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Ansprechpartner:
Prof. Dr. Philipp Gegenwart und Dr. Alexander Tsirlin
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598‐3651
philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>