Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice on the spin liquid

11.06.2018

Researchers from the Institute of Physics in Augsburg report on the coexistence of liquid and frozen states of electron spins in a magnetic compound under pressure.

Macroscopic analogies go a long way in elucidating magnetic phenomena. Magnetic moments in solids can be usually thought of as being in the crystalline (ordered) or gaseous (disordered) states. Intermediate liquid-like states prove to be rare.


Like ice and water coexist in the Arctic, frozen and dynamic spins cast the unusual magnetic state of pressurized -Li2IrO3 above 1.4 GPa manifesting a novel regime of the spin-liquid physics.

Kathryn Hansen / NASA photo / Alaska Dispatch

The researchers from the Chair of Experimental Physics VI/EKM in Augsburg, in collaboration with the University of Bayreuth, IFW Dresden, and Paul Scherrer Institute (Switzerland), report in Physical Review Letters on a novel liquid-like state intermixed with static spins, a magnetic analog of a freezing liquid.

Three common states of matter – gas, liquid, and solid – have close analogs in magnetism. At high temperatures, magnetic moments fluctuate randomly, similar to molecules in gas. At low temperatures, atoms in crystals become ordered, and so do magnetic moments that produce magnetic order, with ferromagnets being a prominent example.

The analogy between ordinary and magnetic liquids is less straight-forward, because ordinary liquids solidify upon cooling, whereas the most interesting magnetic (spin) liquids are those that do not. They preserve spin dynamics down to zero temperature, but a less direct analogy with ordinary liquids still exists. Crystalline solids are good construction materials.

Just like water ice can be carved into ice sculptures, ferromagnets are used to build large-scale devices, such as electric motors. In contrast, liquid water is not a material to build from, but it is central to life, whereas spin liquids can be vital to new technologies, thanks to their special properties that no other system exhibits.

Routes to the spin liquid

Spin liquids are notoriously hard to find. Theory suggests several recipes, but only a few of them made their way into the lab. In 2006, Alexei Kitaev from Caltech conceived a special magnetic model that hosts a new class of spin-liquid states having properties needed for topological quantum computing and novel information technologies. Many groups rushed to realize his scenario experimentally.

To their dismay, even those magnets that contained all necessary ingredients of the Kitaev model failed to show the anticipated spin-liquid state, i.e., at low temperatures the magnetic moments formed the unwanted “crystalline” long-range-order.

Put some pressure

The team from Augsburg could overcome this difficulty by applying pressure. “Pressure tweaks the atomic positions and changes interactions between the atoms. Magnetic interactions are especially sensitive to compression”, says Dr. Alexander Tsirlin, the group leader at the Chair of Experimental Physics VI/EKM in Augsburg. The group led by Tsirlin and Prof. Philipp Gegenwart chose one of the candidate Kitaev materials, -polymorph of the ternary oxide Li₂IrO₃, and used pressures of about 1.5 GPa, which is 15,000 times atmospheric pressure and equivalent to loading the weight of 15 tons onto a surface of 1 cm2.

Several experiments were performed. A miniature pressure cell was placed inside the magnetometer for a direct measurement of the sample magnetization. Additionally, the sample was bombarded with short-lived positively charged elementary particles, muons, which probe the development of the local magnetic field. The result of these experiments was unexpected. While the magnetic long-range order was suppressed, and the liquid-like state of spins appeared, it happened to coexist with frozen spins. The group interpreted this result as the formation of ice on the spin liquid.

Icing or Icebergs?

The freezing of a spin liquid can be caused by imperfections of the material, but that does not seem to be the case here. The group performed a meticulous characterization of the crystal structure before, during, and after the pressure treatment, and they did not notice any defects developing. “The coexistence of dynamic and static spins seems to be generic for pressurized -Li₂IrO₃”, says Prof. Philipp Gegenwart, head of the Chair of Experimental Physics VI/EKM. “What we don’t know yet is whether static spins form clusters, like icebergs in the ocean, or encompass the regions of the spin liquid, like ice covering the water surface,” caveats Dr. Tsirlin. “The spin liquid we got seems different from the one predicted by Kitaev. We are now in touch with theorists and seek to analyze further implications of this novel mixed state.”

Publication:
M. Majumder, R.S. Manna, G. Simutis, J.C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P.K. Biswas, E. Bykova, N. Dubrovinskaia, L.S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A.A. Tsirlin, and P. Gegenwart, Breakdown of magnetic order in the pressurized Kitaev iridate β-Li₂IrO₃, Phys. Rev. Lett. 120, 237202 (2018); http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Ansprechpartner:
Prof. Dr. Philipp Gegenwart und Dr. Alexander Tsirlin
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598‐3651
philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>