Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBEX spacecraft measures changes in the direction of interstellar winds buffeting our solar system

06.09.2013
Data from NASA's Interstellar Boundary Explorer (IBEX) spacecraft reveal that neutral interstellar atoms are flowing into the solar system from a different direction than previously observed.

Interstellar atoms flow past the Earth as the solar system passes through the surrounding interstellar cloud at 23 kilometers per second (50,000 miles per hour).

The latest IBEX measurements of the interstellar wind direction were discovered to differ from those made by the Ulysses spacecraft in the 1990s. That difference led the IBEX team to compare the IBEX measurements to data gathered by 11 spacecraft between 1972 and 2011.

Statistical testing of the Earth-orbiting and interplanetary spacecraft data showed that, over the past 40 years, the longitude of the interstellar helium wind has changed by 6.8 ± 2.4 degrees.

"We concluded it's highly likely that the direction of the interstellar wind has changed over the past 40 years. It's also highly unlikely that the direction of the interstellar helium wind has remained constant," says Dr. Priscilla Frisch, lead author of the study and a senior scientist in the Department of Astronomy and Astrophysics at the University of Chicago.

"We think the change in wind direction could be explained by turbulence in the interstellar cloud around the Sun," she says.

The spacecraft data used for this study were gathered using three methods to measure the neutral interstellar helium wind direction: IBEX and Ulysses provided direct in situ measurements of the neutral wind; the earliest measurements from the 1970s used fluorescence of solar extreme ultraviolet radiation of the helium atoms near the Sun; and measurements also were included of the helium flow direction from "pickup ions," neutral particles in the solar system that become ionized near the Sun and join the solar wind.

"This result is really stunning," says Dr. Dave McComas, IBEX principal investigator, assistant vice president of the Space Science and Engineering Division at Southwest Research Institute, and an author on the paper. "Previously we thought the very local interstellar medium was very constant, but these results show just how dynamic the solar system’s interaction is."

The paper, "Decades-long Changes of the Interstellar Wind Through our Solar System," by P.C. Frisch, M. Bzowski, G., Livadiotis, D.J. McComas, E. Moebius, H.-R. Mueller, W.R. Pryor, N.A. Schwadron, J.M. Sokol, J.V. Vallerga and J.M. Ajello, was published today in the journal Science.

IBEX is one of NASA's series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio leads the IBEX mission with teams of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

For more information, contact Maria Martinez at (210) 522-3305, Communications Department, PO Drawer 28510, San Antonio, TX 78228-0510.

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>