Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBEX Reveals a Missing Boundary At the Edge Of the Solar System

11.05.2012
For the last few decades, space scientists have generally accepted that the bubble of gas and magnetic fields generated by the sun – known as the heliosphere – moves through space, creating three distinct boundary layers that culminate in an outermost bow shock. This shock is similar to the sonic boom created ahead of a supersonic jet.

Earth itself certainly has one of these bow shocks on the sunward side of its magnetic environment, as do most other planets and many stars. A collection of new data from NASA's Interstellar Boundary Explorer (IBEX), however, now indicate that the sun does not have a bow shock.

In a paper appearing online in Science Express on May 10, 2012, scientists compile data from IBEX, NASA's twin Voyager spacecraft, and computer models to show that the heliosphere just isn't moving fast enough to create a bow shock in the tenuous and highly magnetized region in our local part of the galaxy.

"IBEX gives a global view. It shows the whole of this region," says Eric Christian who is the mission scientist for IBEX at NASA's Goddard Space Flight Center in Greenbelt, Md. and who was formerly the program scientist for Voyager. "At the same time the Voyager spacecraft are actually there, in situ, measuring its environment at two locations. The combination of IBEX and Voyager gives you great science and now the new IBEX results strongly indicate that there is no bow shock."

Since the 1980s, the boundaries of the heliosphere have largely been assumed to be a series of three. The first is a fairly spherical boundary called the termination shock -- the point where the solar wind streaming from the sun slows down below supersonic speeds. From there the wind continues more slowly until it collides with the material in the rest of the galaxy and is pushed back, deflecting around the outskirts of the heliosphere, streaming back toward the tail of the moving bubble. This second boundary is called the heliopause. The third boundary was thought to be the bow shock, formed as the heliosphere plowed its way through the local galactic cloud the same way a supersonic jet pushes aside the air as it moves.

The two Voyager spacecraft have confirmed the existence of the first boundary, and have seen evidence for the second as they move toward it. However, each Voyager spacecraft has seen different things on their respective trips – one moving in a more northerly direction, one moving more to the south. They've encountered different regions at different distances from the sun, suggesting the very shape of the heliosphere is squashed and asymmetrical. Scientists believe this asymmetry is caused by the force and direction of magnetic fields ramming into the heliosphere from outside, the same way a hand pushing on a balloon will force it out of shape. This was the first clue that there's a strong magnetic field exerting pressure on the outskirts of the solar system. Independently, IBEX has seen a well-defined band, or ribbon, at the edge of the heliosphere, believed to be defined by this external magnetic field. Other studies from IBEX have helped quantify the magnitude of the magnetic field, showing that it is on the strong end of what was previously thought possible.

› View larger
Stars travel through the galaxy surrounded by a bubble of charged gas and magnetic fields, rounded at the front and trailing into a long tail behind. The bubble is called an astrosphere, or -- in the case of the one around our sun -- a heliosphere. This image shows a few examples of astrospheres that are very strong and therefore visible. Credit: NASA/Goddard Space Flight Center "We've seen one after another signature of a very strong magnetic field in the galactic environment," says Nathan Schwadron, a space scientist at the University of New Hampshire in Durham who is one of the authors on the paper. "That magnetic field influences the structure of the heliosphere and the boundaries themselves. That leads to a whole new paradigm."

Along with increased evidence for a strong external magnetic field, IBEX has also provided a new measurement for the speed of the heliosphere itself with respect to the local cloud.

"We recently analyzed two years worth of IBEX data, and they showed that the speed of the heliosphere – with respect to the local cloud of material – is only 52,000 miles per hour, instead of the previously believed 59,000," says David McComas at the Southwest Research Institute in San Antonio, Texas, who is first author on this paper and also the principal investigator for IBEX. "That might not seem like a huge difference, but it translates to a quarter less pressure exerted on the boundaries of the heliosphere. This means there's a very different interaction, a much weaker interaction, than previously thought."

In essence, it means that, like an airplane going too slowly to produce a sonic boom, the heliosphere isn't moving fast enough to create a bow shock, given the density and pressures of the material its moving through.

The heliosphere's boundaries lie roughly 10 billion miles away from Earth, but are nonetheless crucial for understanding our place in the universe. Indeed, the heliopause provides some protection for our solar system from the harsh, radiation environment surrounding it. By knowing the nature of these boundaries, scientists can start to better understand the propagation of particles that do have enough energy and speed to make it into our environment.

As scientists incorporate this substantive new understanding into their physical models, they will also be waiting for more evidence from both IBEX and the Voyagers, which they hope will continue to send back observations for many years to come.

"Imagine the point at which Voyager crosses the threshold of the heliopause and either does or does not see what IBEX is predicting," says Schwadron. "There will be enormous opportunities for scientific advancement."

For more information about the IBEX mission, go to:
› http://www.nasa.gov/ibex
Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, MD

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/ibex/news/nobowshock.html

More articles from Physics and Astronomy:

nachricht How to control friction in topological insulators
14.10.2019 | Universität Basel

nachricht Nanoscale manipulation of light leads to exciting new advancement
14.10.2019 | University of New Mexico

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>