Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

I'm forever imploding bubbles

09.04.2009
New sensor ensures our hospitals are hygienic by listening to collapsing bubbles

The National Physical Laboratory (NPL) has developed the first sensor capable of measuring localized ultrasonic cavitation – the implosion of bubbles in a liquid when a high frequency sound wave is applied.

The sensor will help hospitals ensure that their instruments are properly disinfected before they are used on patients. The device recently won the annual Outstanding Ultrasonics Product award from the Ultrasonic Industry Association.

Cavitation is used throughout the NHS by doctors and dentists to clean and disinfect surgical instruments. A high frequency sound wave is passed through a disinfecting liquid to create bubbles that implode. The force of each implosion removes contaminate particles from surrounding materials. Cavitation is one of the most effective cleaning processes. There are more than 200 000 places in a teaspoon of tap water where a bubble can emerge and implode, and the process is self-stimulating because the implosion of one bubble creates new sites for further bubbles to emerge. Until now there has been no accurate method of identifying how much cavitation takes place at different locations in a cleaning system, and therefore no measureable way to ensure the cleaning process is effective. The new sensor also means that technicians can fine-tune and optimise equipment so that only the energy required is used, reducing costs and environmental impact.

Previously the only way to measure cavitation rates has been to lower a piece of aluminium foil into the liquid and count the number of 'dents' caused by bubble implosion. NPL's new sensor takes a different approach by monitoring the acoustic signals generated when the bubbles implode. It listens to the bubbles as they collapse and uses the sound to identify how much cavitation is taking place at a given location.

"To spark cavitation we use ultrasonics to 'shout' at a liquid. Our sensor then listens to the response and tells us how much cavitation is taking place as a result of using that particular stimulus," explains Mark Hodnett, a Senior Research Scientist at NPL. "Cavitation is a powerful process but until now users have had no way to measure exactly how loud to shout in order to get a useful amount of bubbles, nor been able to quantify how energetic those bubbles are. They've previously had to rely on trial and error. This is dangerous when you are dealing with cleanliness in medical environments, and a waste of energy. The NPL sensor provides a new tool for improving cleaning systems and aiding instrument hygiene."

Sonic Systems has purchased one of NPL's sensors and say that it fills an important gap in the market. "There is nothing else like the NPL sensor available to sonic equipment manufacturers. We use it as part of our product development process. It has enabled us to verify the cavitation fields inside some of our more complex systems. This has given us the confidence to confirm to customers that our equipment is truly optimised."

National Physical Laboratory

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all

NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Richard Moss | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>