Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble views a bizarre cosmic quartet

18.06.2015

This new NASA/ESA Hubble Space Telescope image shows a gathering of four cosmic companions. This quartet forms part of a group of galaxies known as the Hickson Compact Group 16, or HCG 16 — a galaxy group bursting with dramatic star formation, tidal tails, galactic mergers and black holes.

This quartet is composed of (from left to right) NGC 839, NGC 838, NGC 835, and NGC 833 — four of the seven galaxies that make up the entire group. They shine brightly with their glowing golden centres and wispy tails of gas [1], set against a background dotted with much more distant galaxies.


This new NASA/ESA Hubble Space Telescope image shows four of the seven members of galaxy group HCG 16.

Credit: NASA, ESA, ESO

Compact groups represent some of the densest concentrations of galaxies known in the Universe, making them perfect laboratories for studying weird and wonderful phenomena. Hickson Compact Groups in particular, as classified by astronomer Paul Hickson in the 1980s, are surprisingly numerous, and are thought to contain an unusually high number of galaxies with strange properties and behaviours [2].

HCG 16 is certainly no exception. The galaxies within it are bursting with dramatic knots of star formation and intensely bright central regions. Within this single group, astronomers have found two LINERs, one Seyfert 2 galaxy and three starburst galaxies.

These three types of galaxy are all quite different, and can each help us to explore something different about the cosmos. Starbursts are dynamic galaxies that produce new stars at much greater rates than their peers. LINERs (Low-Ionisation Nuclear Emission-line Regions) contain heated gas at their cores, which spew out radiation. In this image NGC 839 is a LINER-type and luminous infrared galaxy and its companion NGC 838 is a LINER-type galaxy with lots of starburst activity and no central black hole.

The remaining galaxies, NGC 835 and NGC 833, are both Seyfert 2 galaxies which have incredibly luminous cores when observed at other wavelengths than in the visible light, and are home to active supermassive black holes.

The X-ray emission emanating from the black hole within NGC 833 (far right) is so high that it suggests the galaxy has been stripped of gas and dust by past interactions with other galaxies. It is not alone in having a violent history — the morphology of NGC 839 (far left) is likely due to a galactic merger in the recent past, and long tails of glowing gas can be seen stretching away from the galaxies on the right of the image.

This new image uses observations from Hubble's Wide Field Planetary Camera 2, combined with data from the ESO Multi-Mode Instrument installed on the European Southern Observatory’s New Technology Telescope in Chile. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestants Jean-Christophe Lambry and Marc Canale.

Notes


[1] A tidal tail is a thin, elongated region of stars and interstellar gas that extends into space from a galaxy. They are a result of the strong gravitational forces around interacting galaxies.


[2] Hubble has imaged several of these groups before, including HCG 31 (opo1008a), HCG 92 (heic0910i), HCG 59 (potw1004a), HCG 22 (potw1349a), HCG 7 (potw1132a), HCG 87 (opo9931a), and HCG 90 (heic0902a).

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

More information

Image credit: NASA, ESA, ESO, J. Charlton (The Pennsylvania State University)
Acknowledgements: Jean-Christophe Lambry, Marc Canale

Contacts

Mathias Jäger
ESA/Hubble Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

Mathias Jäger | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1514/

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>