Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to Weigh Stars With Gravitational Lensing

25.07.2018

Heidelberg astronomers predict star approaches with extreme precision for the first time

Using data from Gaia astrometry satellite, astronomers at Heidelberg University investigated the movement of millions of stars in the Milky Way galaxy. For the first time, they were able to predict the approach of two stars with extreme precision and to forecast characteristic effects of relativistic light deflection that can be used to precisely measure the mass of stars. The findings were published in the journal “Astronomy & Astrophysics Letters”.


Künstlerische Darstellung des Gaia-Satelliten mit der Milchstraße im Hintergrund.

Bildquelle: ESA/ATG medialab; Hintergrundbild: ESO/S. Brunier

“The stars in the Milky Way don’t stand still, but move relative to one another like gnats in a swarm. As seen from Earth, a foreground star occasionally passes close to a background star. Light travelling towards us from the background star is shifted ever so slightly by the gravitational field of the foreground star as it passes,” explains Prof. Dr Joachim Wambsganß, Director at the Institute of Astronomical Computing at Heidelberg University's Centre for Astronomy (ZAH).

This “astrometrical gravitational lensing” changes the position of the background star in the heavens by a very small but still measurable amount. This shift plus the relative position of the two approaching stars can be used to derive the mass of the foreground star.

“This method of measuring mass is precise to within a few percentage points. Until now, however, it has been very difficult to predict when and which star pairs would pass close enough to one another to support such measurements, because the stars' precise ‘proper’ motion in the sky must be known,” emphasises Prof. Wambsganß.

The Gaia astrometry satellite has been measuring the position and the proper motion of approximately 1.5 billion stars for about four years, and its recently released data are of sufficient precision. The extensive dataset was published in April of this year.

Jonas Klüter, a doctoral student working with Prof. Wambsganß, combed through this vast data volume for the best star-crossings observable within the next 50 years, the period that can support reliable predictions using Gaia. The exhaustive analysis identified nearly 70.000 candidates, although not all are expected to produce a measurable shift. The researchers were able to predict a currently measurable effect for two stars currently located near a background star.

They are known as Luyten 143-23 and Ross 322 in the star catalogue and move across the celestial sphere at a speed of 1,600 and 1,400 milliarcseconds (mas), respectively. According to Jonas Klüter, one of the stars passed closest to the background star in early July this year; the other will do so in early August. Gravitational lensing shifts the position of the background stars by 1.7 and 0.8 mas, respectively.

Only the best telescopes can measure this change from Earth. Jonas Klüter is therefore conducting an observational campaign using, among others, the telescopes of the European Southern Observatory (ESO) in Chile. Aided by the telescopes, he will track the approaching star pairs and measure the positional shift to identify for the first time the mass of two stars by means of gravitational lensing.

Contact:
Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Dr Guido Thimm
Centre for Astronomy of Heidelberg University (ZAH)
Phone +49 6221 54-1842
thimm@ari.uni-heidelberg.de

Originalpublikation:

J. Klüter, U. Bastian, M. Demleitner, J. Wambsganss: Ongoing astrometric microlensing events of two nearby stars, Astronomy & Astrophysics Letters, https://doi.org/10.1051/0004-6361/201833461

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>