Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Physics of Champagne and Soda Bubbles May Help Address the World's Future Energy Needs

22.12.2014

Researchers in Tokyo use Japan's most powerful computer to explore the role of Ostwald ripening in the formation of bubbles -- as important in engineering as they are in celebratory toasts

Uncork a bottle of champagne, and as the pressure of the liquid is abruptly removed, bubbles immediately form and then rapidly begin the process of "coarsening," in which larger bubbles grow at the expense of smaller ones.


Credit: H.Inaoka/RIKEN

After multi-bubble nucleation, Ostwald ripening occurs because of the "coarsening" interaction between bubbles until only a single bubble remains.


Credit: H.Inaoka/RIKEN

After multi-bubble nucleation, Ostwald ripening occurs because of the "coarsening" interaction between bubbles until only a single bubble remains.

This fundamental nonequilibrium phenomenon is known as "Ostwald ripening," and though it is most familiar for its role in bubbly beverages, it is also seen in a wide range of scientific systems including spin systems, foams and metallic alloys.

On a much larger scale, Ostwald ripening can be observed in a power-generating turbine. Most power stations rely on boilers to convert water into steam, but the phase transition involved is highly complex. During the phase transition, no one is exactly sure what's occurring inside the boiler -- especially how bubbles form.

So a team of researchers from the University of Tokyo, Kyusyu University and RIKEN in Japan set out to find an answer. In The Journal of Chemical Physics, from AIP Publishing, the researchers describe how they were able to simulate bubble nucleation from the molecular level by harnessing the K computer at RIKEN, the most powerful system in Japan.

At the heart of their work were molecular dynamics simulations. The basic concept behind these simulations is to put some virtual molecules in a box, assign them initial velocities and study how they continue moving -- by using Newton's law of motion to determine their position over time. There were major challenges in doing this, explained Hiroshi Watanabe, a research associate at the University of Tokyo's Institute for Solid State Physics.

"A huge number of molecules, however, are necessary to simulate bubbles -- on the order of 10,000 are required to express a bubble," Watanabe said. "So we needed at least this many to investigate hundreds of millions of molecules -- a feat not possible on a single computer."

The team, in fact, wound up simulating a whopping 700 million particles, following their collective motions through a million time steps -- a feat they accomplished by performing massively parallel simulations using 4,000 processors on the K computer. This was, to the best of their knowledge, the first simulation to investigate multi-bubble nuclei without relying on any artificial conditions.

"In the past, while many researchers wanted to explore bubble nuclei from the molecular level, it was difficult due to a lack of computational power," explained Watanabe. "But now, several petascale computers -- systems capable of reaching performance in excess of one quadrillion point operations per second -- are available around the world, which enable huge simulations."

The team's key finding? The time evolutions of bubbles are well described by a classical theory developed during the 1960s, a mathematical framework called "LSW theory" after its three developers -- Lifshift and Slyozov in Soviet Union and Wagner in Germany. While LSW theory has been shown to hold true for other systems, like ice crystals growing in so-called freezer-burned ice cream, prior to this work nobody had ever shown it also works for describing gas bubbles in liquid.

"While the nucleation rate of droplets in condensation is well predicted by the classical theory, the nucleation rates of bubbles in a superheated liquid predicted by the theory are markedly different from the values observed in experiments," Watanabe said. "So we were expecting the classical theory to fail to describe the bubble systems, but were surprised to find that it held up."

In other words, although Watanabe and colleagues had hoped their simulation would provide clues to help clarify why the classical theory fails to predict the rate of bubble nucleation, it remains a mystery.

As far as implications of the team's work, an enhanced understanding of the behavior of bubbles is very important for the field of engineering because it may enable the design of more efficient power stations or propellers.

What's next for the researchers? After exploring cavitation, they're now shifting their focus to boiling. "Bubbles appear when liquid is heated as 'boiling,' or as 'cavitation' when the pressure of the liquid decreases," said Watanabe. "Simulating boiling is more difficult than cavitation at the molecular level, but it will provide us with new knowledge that can be directly applied to designing more efficient dynamo."

The team is also targeting a polymer solution. "Surfactants make bubbles stable, while defoamers make them unstable," he added. "Recent developments in computational power will allow us to simulate these kinds of complex systems at the molecular level."

The article, "Ostwald ripening in multiple-bubble nuclei," is authored by Hiroshi Watanabe, Masaru Suzuki, Hajime Inaoka and Nobuyasu Ito. It will appear in The Journal of Chemical Physics on December 18, 2014 (DOI: 10.1063/1.4903811). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jcp/141/23/10.1063/1.4903811

The authors of this paper are affiliated with the University of Tokyo, Kyusyu University and the Japan Advanced Institute for Computational Science.

VIDEO: http://apollon.issp.u-tokyo.ac.jp/~watanabe/sample/movie/bubble.avi
After multi-bubble nucleation, Ostwald ripening occurs because of the "coarsening" interaction between bubbles until only a single bubble remains. CREDIT: H.Inaoka/RIKEN

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi, AIP | newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>