Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stars grow into heavyweights

04.11.2015

Astronomers find a stable disk around a young, massive sun

Stars count lightweights and heavyweights among their number. All are born in clouds of gas and dust, but the more massive a baby star, the earlier nuclear fusion ignites in its core. And the radiation pressure produced here should really purge its surroundings and thus prevent the infall of matter which will allow the star to grow bigger. Some stars nevertheless manage to reach masses of more than a hundred times that of our Sun. How is this possible?


A star puts on weight: This artist’s impression shows the disk of gas and dust around the massive sun AFGL 4176.

© K. G. Johnston and ESO

Astronomers have believed for some time that disks around the infant stars play an important role in this process. A team of researchers including astronomers from the Heidelberg Max Planck Institute for Astronomy have now discovered such a stable structure around one of the most massive, newly forming stars in our galaxy.

The team headed by Katharine Johnston from the University of Leeds, and including the Max Planck astronomers Thomas Robitaille, Henrik Beuther, Hendrik Linz and Roy van Boekel, turned their sights on the object with catalogue number AFGL 4176. It is a very massive star in the southern constellation known as Centaurus, around 14,000 light years from Earth.

The star is in the process of being born, which is why its immediate environment is concealed within an envelope of gas and dust. The scientists observed the star in the millimetre and submillimetre range with the ALMA observatory of the European Southern Observatory (ESO), however – and looked behind the veil and into the interior of the envelope. They detected a disk-like, rotating structure.

To confirm this observation, the astronomers arranged a kind of identification parade: first they simulated more than 10,000 model disks with different properties. They then compared these images and spectra with the data obtained from nature. The best agreement was for a stable disk, where the gravitational effects of both the star and the disk material are important.

The radius of the disk surrounding AFGL 4176 is roughly 2000 times the average distance between the Earth and the Sun. The total mass is 12 solar masses – this corresponds to just under half the weight of the star itself, which is roughly 25 solar masses. The disk rotates around the star in a similar way to the planets around our Sun: the gas in the inner regions moves faster than that in the outer ones and obeys the laws discovered by Johannes Kepler at the beginning of the 17th century.

These Keplerian disks could play a key role in the growth of massive stars and particularly explain how enough additional matter can accrete despite the substantial radiation pressure exerted by the young star. One factor is that a stable disk of this type can direct enormous amounts of matter onto the nascent star; another is that it presents a very narrow profile to the radiation pressure and thus a much smaller area of attack than gas which surrounds the star like a spherical shell.

Astronomers had previously been unable to detect stable disks around the most massive stellar embryos (O-type stars) with certainty. It was therefore unclear whether these disks were possible explanations at all.

The observations by Katharine Johnston and her colleagues, in contrast, show that at least one of the most massive stars can be formed in the same way as its less massive relatives: through mechanisms which are the same as those of less massive stars despite differences in scales and in timing; and with matter which is funnelled onto the growing infant star by a Keplerian disk.

The high quality of the ALMA observations raises expectations that it will also be possible to clarify further important, unanswered questions about the formation of massive stars. The astronomers hope for information about one feature in particular: very massive stars are nearly always members of twin or multiple star systems. High-resolution images of the innermost regions in the early phases of star birth could show directly how the precursors of the different components of such a system form.


Contact

Dr. Markus Pössel
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Email: poessel@mpia.de

 
Dr. Henrik Beuther
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-447

Email: beuther@mpia.de

Dr. Thomas Robitaille
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-395

Email: robitaille@mpia.de


Original publication
Johnston et al.
A Keplerian-like disk around the forming O-type star AFGL 4176
Astrophysical Journal Letters, 29 October 2015

Source

Dr. Markus Pössel | Max Planck Institute for Astronomy, Heidelberg
Further information:
https://www.mpg.de/9723445/massive-star

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>