Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stars grow into heavyweights

04.11.2015

Astronomers find a stable disk around a young, massive sun

Stars count lightweights and heavyweights among their number. All are born in clouds of gas and dust, but the more massive a baby star, the earlier nuclear fusion ignites in its core. And the radiation pressure produced here should really purge its surroundings and thus prevent the infall of matter which will allow the star to grow bigger. Some stars nevertheless manage to reach masses of more than a hundred times that of our Sun. How is this possible?


A star puts on weight: This artist’s impression shows the disk of gas and dust around the massive sun AFGL 4176.

© K. G. Johnston and ESO

Astronomers have believed for some time that disks around the infant stars play an important role in this process. A team of researchers including astronomers from the Heidelberg Max Planck Institute for Astronomy have now discovered such a stable structure around one of the most massive, newly forming stars in our galaxy.

The team headed by Katharine Johnston from the University of Leeds, and including the Max Planck astronomers Thomas Robitaille, Henrik Beuther, Hendrik Linz and Roy van Boekel, turned their sights on the object with catalogue number AFGL 4176. It is a very massive star in the southern constellation known as Centaurus, around 14,000 light years from Earth.

The star is in the process of being born, which is why its immediate environment is concealed within an envelope of gas and dust. The scientists observed the star in the millimetre and submillimetre range with the ALMA observatory of the European Southern Observatory (ESO), however – and looked behind the veil and into the interior of the envelope. They detected a disk-like, rotating structure.

To confirm this observation, the astronomers arranged a kind of identification parade: first they simulated more than 10,000 model disks with different properties. They then compared these images and spectra with the data obtained from nature. The best agreement was for a stable disk, where the gravitational effects of both the star and the disk material are important.

The radius of the disk surrounding AFGL 4176 is roughly 2000 times the average distance between the Earth and the Sun. The total mass is 12 solar masses – this corresponds to just under half the weight of the star itself, which is roughly 25 solar masses. The disk rotates around the star in a similar way to the planets around our Sun: the gas in the inner regions moves faster than that in the outer ones and obeys the laws discovered by Johannes Kepler at the beginning of the 17th century.

These Keplerian disks could play a key role in the growth of massive stars and particularly explain how enough additional matter can accrete despite the substantial radiation pressure exerted by the young star. One factor is that a stable disk of this type can direct enormous amounts of matter onto the nascent star; another is that it presents a very narrow profile to the radiation pressure and thus a much smaller area of attack than gas which surrounds the star like a spherical shell.

Astronomers had previously been unable to detect stable disks around the most massive stellar embryos (O-type stars) with certainty. It was therefore unclear whether these disks were possible explanations at all.

The observations by Katharine Johnston and her colleagues, in contrast, show that at least one of the most massive stars can be formed in the same way as its less massive relatives: through mechanisms which are the same as those of less massive stars despite differences in scales and in timing; and with matter which is funnelled onto the growing infant star by a Keplerian disk.

The high quality of the ALMA observations raises expectations that it will also be possible to clarify further important, unanswered questions about the formation of massive stars. The astronomers hope for information about one feature in particular: very massive stars are nearly always members of twin or multiple star systems. High-resolution images of the innermost regions in the early phases of star birth could show directly how the precursors of the different components of such a system form.


Contact

Dr. Markus Pössel
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Email: poessel@mpia.de

 
Dr. Henrik Beuther
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-447

Email: beuther@mpia.de

Dr. Thomas Robitaille
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-395

Email: robitaille@mpia.de


Original publication
Johnston et al.
A Keplerian-like disk around the forming O-type star AFGL 4176
Astrophysical Journal Letters, 29 October 2015

Source

Dr. Markus Pössel | Max Planck Institute for Astronomy, Heidelberg
Further information:
https://www.mpg.de/9723445/massive-star

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>