Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How scientists predicted corona's appearance during Aug. 21, 2017, total solar eclipse

28.08.2018

It was Aug. 14, 2017, just one week before the Moon would cross paths with the Sun and Earth, casting its shadow across the United States. The entire country buzzed with anticipation for the fleeting chance to see the corona, the Sun's tenuous outer atmosphere.

But the wait was uniquely nerve-wracking for a group of scientists at Predictive Science Inc., a private research company in San Diego: They had just published a prediction of what the corona would look like on Aug. 21, the day of the total solar eclipse. How would their prediction -- the result of a complex numerical model and tens of hours of computing -- compare to the real thing?


This visualization shows the Sun's three-dimensional magnetic field during one full solar rotation. The Predictive Science researchers modeled magnetic field lines in order to calculate the presence of complex structures in the corona. View animation: https://www.nasa.gov/sites/default/files/thumbnails/image/3dmagfields.gif

Credit: Predictive Science Inc./NASA Goddard, Joy Ng


Predictive Science Inc. developed a numerical model that simulated what the corona would look like during the Aug. 21, 2017, total solar eclipse. Click and drag the slider to compare a composite image generated from photographs taken on the day of the total eclipse to the model's predictions. View animation: https://www.nasa.gov/sites/default/files/thumbnails/image/eclipsemodelfade4.gif

Credit: Predictive Science Inc./Miloslav Druckmüller, Peter Aniol, Shadia Habbal/NASA Goddard, Joy Ng

"Waiting for totality, you know exactly what you've predicted and what you're expecting," Predictive Science researcher Zoran Miki? said. "Because you work with the model so much and see the prediction so many times, it's burned into your brain. There's a lot of anxiety because if you're totally wrong, it's a bit embarrassing."

The Predictive Science researchers used data from NASA's Solar Dynamics Observatory, or SDO, to develop a model that simulates the corona. Their model uses measurements of magnetic fields on the Sun's surface to predict how the magnetic field shapes the corona.

Their work was supported by NASA, the National Science Foundation and the Air Force Office of Scientific Research. Miki? is the lead author of a paper summarizing their work and published in Nature Astronomy on Aug. 27, 2018.

Coronal science is deeply rooted in the history of total eclipses; even with state-of-the-art technology, it's only during a total eclipse that scientists can resolve the lowest region of the corona, just above the Sun's surface. This dynamic part of the solar atmosphere is threaded with complex magnetic fields that supply the energy for tremendous eruptions like flares and coronal mass ejections.

As particles and radiation from solar explosions travel out from the Sun, they can manifest as disturbances in near-Earth space, known as space weather. Just as variable as the weather we experience on Earth, space weather can disrupt communications signals, astronauts and satellites in orbit, or even power grids.

The ability to forecast and predict space weather -- much like we do terrestrial weather -- is critical to mitigating these impacts, and models such as Predictive Science's are key tools in the effort.

Eclipses offer a unique opportunity for researchers to test their models. By comparing the model's corona prediction to observations during the eclipse itself, they could assess and improve the performance of their models.

The model the Predictive Science team used for the August 2017 eclipse was their most complex yet in two decades of eclipse-predicting.

Greater complexity demands more computing hours, and each simulation required thousands of processers and took about two days of real time to complete. The research group ran their model on several supercomputers including facilities at the University of Texas at Austin's Texas Advanced Computer Center; the San Diego Supercomputer Center at the University of California San Diego; and the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA's Ames Research Center in Silicon Valley, California.

In addition to SDO's maps of the Sun's magnetic field, the model used SDO observations of prominences -- snakelike structures made of cool, dense solar material that protrude from the Sun's surface. Prominences form in stressed parts of the magnetic field, where it's twisted into a rope and capable of erupting if overwound.

The researchers also included new calculations for coronal heating. We don't yet understand how the corona blazes upwards of 2 million degrees Fahrenheit, while just 1,000 miles below, the underlying surface simmers at a balmy 10,000 F. One theory proposes electromagnetic waves -- called Alfvén waves -- launched from the Sun's churning surface rush out into the corona, heating particles as they propagate outwards, a bit like how ocean waves push and accelerate surfers toward the shore.

By accounting for prominences and these tiny -- but numerous -- waves, the scientists hoped to paint an increasingly detailed portrait of the corona's complex behavior.

After the eclipse, the group found their prediction bore a striking resemblance to the Aug. 21, 2017, corona, although the model lacks many finer structures. Both the prediction and photos from the ground taken on the day of the eclipse show three helmet streamers -- immense, petal-shaped structures that form over a network of magnetic loops. The strength of the comparison supports advances in the new model.

Scientists have always known the twisted magnetic fields underlying prominences are an important part of the Sun, but the team's earlier models weren't sophisticated enough to reflect it. The same is true for the waves heating the corona. "In some sense, the model's performance tells us the new heating model is headed in the right direction," Miki? said. "It's certainly showing improved results. We should pursue and refine it further."

In the business of eclipse predictions, it helps when the Sun is quiet, or less active. In August 2017, the Sun was in one such quiet phase, moving steadily toward a period of low solar activity in its approximately 11-year cycle.

The scientists fed their model with magnetic field data collected from the Sun's Earth-facing side over the preceding 27 days -- the time it takes the Sun to complete one full rotation -- since they currently don't have a way to observe the entire spherical solar surface all at once. With that approach, measurements taken at the beginning of the 27-day period -- from parts of the Sun's surface that have subsequently rotated toward the back where they can no longer be seen -- are more likely to grow outdated than those taken at the end. But in times of diminished solar activity, the magnetic field isn't quick to change, so even 27-day-old data is useful.

One discrepancy between the prediction and the observations is a skinnier feature, called a pseudostreamer, that jets out from the Sun's upper-right. The researchers determined their model missed the pseudostreamer because the magnetic field changed in that specific region during the data collection. A different model's prediction successfully captured this pseudostreamer, Miki? said, because it appears to have estimated the magnetic field more accurately there.

"The biggest thing I take away from this is they've got a sophisticated model that looks good, but they're limited by their observations," said Alex Young, a solar scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who wasn't involved with the study. "What the model misses is a matter of the Sun changing, and that's something they can't handle without enough observations from the right places."

Testing a model like this so thoroughly supports the idea that, with more data and diverse vantage points, scientists can better calculate the Sun's finer dynamics -- and ultimately improve their ability to forecast space weather events that can interfere with technology and astronauts in space.

Just under a year after millions glimpsed the corona themselves during the total eclipse, on Aug. 12, 2018, NASA launched Parker Solar Probe on its way to actually fly through the corona, going closer to the Sun than any spacecraft before.

Parker Solar Probe will send back to Earth observations from inside the corona itself, which researchers can add to their models, filling crucial knowledge gaps in the corona's complicated physics.

Miki? said models like theirs can complement the mission by contextualizing the spacecraft's journey through the corona. Scientists have never worked with data collected so close to the Sun. By modeling the entire corona -- the bigger picture -- researchers will provide crucial perspective on Parker's surroundings as it ventures into entirely unexplored territory.

"This is amazing science for Parker Solar Probe and from the eclipse, that shares one key purpose," said Thomas Zurbuchen, associate administrator at NASA Headquarters in Washington. "Beyond the science, this is about really advancing our understanding of and ability to predict space weather, a major impact we can have at NASA."

Lina Tran | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2018/how-scientists-predicted-corona-s-appearance-during-aug-21-2017-total-solar-eclipse
http://dx.doi.org/10.1038/s41550-018-0562-5

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>