Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How photons change chemistry

16.03.2017

The quantum nature of light does usually not play an important role when considering the chemical properties of atoms or moelcules. In an article published in the Proceedings of the National Academy of Sciences scientists from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron-Laser Science (CFEL) in Hamburg show, however, that under certain conditions photons can strongly influence chemistry. These results indicate the possibility that chemical processes can be tailored by photons.

The chemical properties of atoms and molecules are determined by the electromagnetic interaction between the negatively charged electrons and the positively charged nuclei. In most cases the quantum nature of the interaction does not play an important role.


Photons in an optical cavity alter the properties of molecules, such as their binding length.

Jörg M. Harms/MPSD

However, upon placing a molecule between two strongly reflecting mirrors, a so-called optical cavity, the quantum nature of the electromagnetic field can become important. In such a situation single photons can interact unusually strongly with the molecule, and one can no longer distinguish between molecule and photons. The properties of this new state of matter can be very different to the bare molecule, e.g., a higher conductivity.

Experimentally such situations have already been observed, but theoretical predictions of the chemical properties of such states were possible only to a limited extend. The reason being that the common quantum-chemical methods do not take into account the quantum nature of light.

The theory department of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL has now extended some of these methods to include the coupling to the photons. Among other things, the group of Prof. Angel Rubio showed how strong coupling to photons in an optical cavity changes chemical properties of molecules, like its bond length or its absorption.

„Of special interest“, says Johannes Flick, the main author of the work, „are the changes of the Born-Oppenheimer surfaces, which are used to characterize chemical reactions. We found that strong light-matter coupling induces novel reaction pathways.“ At the same time the scientists investigated whether standard chemical reactions can be made more efficient by employing strong coupling to the photons. To do so, they considered a simple model of charge transfer between two quantum systems.

Such charge-transfer reactions are usually driven by a laser pulse. In this work, the reaction was assisted by a few photons in the optical cavity, which allowed for lower laser intensities. „Our theoretical findings do not only help to better understand the behavior of atoms and molecules strongly coupled to photons in an optical cavity,“ says Johannes Flick, „but they also highlight the possibility to change chemical properties via photons.“

In a next step the scientist want to apply their developed theoretical methods to more complex molecules. The goal is to show that the current results are generally valid and that one can alter the chemical properties of all sorts of different molecules via strong light-matter coupling.

Reference:
Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry.
Johannes Flick, Michael Ruggenthaler, Heiko Appel and Angel Rubio
PNAS, Early Edition - Doi: 10.1073/pnas.1615509114

Weitere Informationen:

http://www.mpsd.mpg.de/391004/20170315-flick-pnas-rubio - Institute news incl. contacts.
https://dx.doi.org/10.1073/pnas.1615509114 - Original publication site

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>