Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hovering Not Hard if You’re Top-Heavy

14.02.2012
Top-heavy structures are more likely to maintain their balance while hovering in the air than are those that bear a lower center of gravity, researchers at New York University’s Courant Institute of Mathematical Sciences and Department of Physics have found.

Their findings, which appear in the journal Physical Review of Letters, are counter to common perceptions that flight stability can be achieved only through a relatively even distribution of weight—and may offer new design principles for hovering aircraft.

As the Wright brothers demonstrated 100 years ago, the key challenge of flight is maintaining balance. Yet, while insects took to the air 400 million years earlier, their flight stability remains a mystery because of the complex aerodynamics of their flapping wings.

The NYU researchers approached this question by creating experimental conditions needed to achieve stable hovering in mechanical flyers. To do so, they created a range of pyramid-shaped “bugs” constructed from paper that hover when placed in an oscillating column of air, mimicking the effect of flapping wings. They captured the experiment with high-speed videos in order to analyze the nature of the airflow around the bugs.

To gauge which types of structures best maintained their balance, the researchers created paper bugs with various centers of mass. Top-heavy bugs were made by fixing a weight above the pyramid, and low center-of-mass bugs bore this weight below.

Surprisingly, their results showed that the top-heavy bugs hovered stably while those with a lower center of mass could not maintain their balance.

The team showed that when the top-heavy bug tilts, the swirls of air ejected from the far side of the body automatically adjust to keep it upright.

“It works somewhat like balancing a broomstick in your hand,” explained Jun Zhang, a Professor at the Courant Institute and one of the study’s co-authors. “If it begins to fall to one side, you need to apply a force in this same direction to keep it upright.”

For bugs, it is aerodynamical forces that provide this stability.

The lessons learned from these studies could be put to use in designing stable and maneuverable flapping-wing robots.

The study’s other co-authors were postdoctoral researchers Bin Liu, who led the first round experiments, and Leif Ristroph, who came up with the stability theory with Courant Professor Stephen Childress. Another co-author, Annie Weathers, now studies mechanics at the University of Texas, Austin. She took some measurements during her last semester as an undergraduate at NYU.

The study was funded by grants from the National Science Foundation and the U.S. Department of Energy.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

nachricht View of the Earth in front of the Sun
19.06.2019 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>