Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Nuclear Matter Featured in Science

23.07.2012
A review article appearing in the July 20, 2012, issue of the journal Science describes groundbreaking discoveries that have emerged from the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy’s Brookhaven National Laboratory, synergies with the heavy-ion program at the Large Hadron Collider (LHC) in Europe, and the compelling questions that will drive this research forward on both sides of the Atlantic.
With details that help enlighten our understanding of the hot nuclear matter that permeated the early universe, the article is a prelude to the latest findings scientists from both facilities will present at the next gathering of physicists dedicated to this research — Quark Matter 2012, August 12-18 in Washington, D.C.

“Nuclear matter in today’s universe hides inside atomic nuclei and neutron stars,” begin the authors, Barbara Jacak, a physics professor at Stony Brook University and spokesperson for the PHENIX experiment at RHIC, and Berndt Mueller, a theoretical physicist at Duke University. Collisions between heavy ions at machines like RHIC, running since 2000, and more recently, the LHC, make this hidden realm accessible by recreating the extreme conditions of the early universe on a microscopic scale. The temperatures achieved in these collisions — more than 4 trillion degrees Celsius, the hottest ever created in a laboratory — briefly liberate the subatomic quarks and gluons that make up protons and neutrons of ordinary atomic nuclei so scientists can study their properties and interactions.

“Quarks and the gluons that hold them together are the building blocks of all the visible matter that exists in the universe today — from stars, to planets, to people,” Jacak said. “Understanding the evolution of our universe thus requires knowledge of the structure and dynamics of these particles in their purest form, a primordial ‘soup’ known as quark-gluon plasma (QGP).”

RHIC was the first machine to demonstrate the formation of quark-gluon plasma, and determine its unexpected properties. Instead of an ideal gas of weakly interacting quarks and gluons, the QGP discovered at RHIC behaves like a nearly frictionless liquid. This matter’s extremely low viscosity (near the lowest theoretically possible), its ability to stop energetic particle jets in their tracks, and its very rapid attainment of such a high equilibrium temperature all suggest that the fluid’s constituents are quite strongly interacting, or coupled.

“Understanding strongly coupled or strongly correlated systems is at the intellectual forefront of multiple subfields of physics,” the authors write. The findings at RHIC have unanticipated connections to several of these, including conventional plasmas, superconductors, and even some atoms at the opposite extreme of the temperature scale — a minute fraction of a degree above absolute zero — which also behave as a nearly perfect fluid with vanishingly low viscosity when confined within an atomic trap.

Another stunning surprise was that mathematical approaches using methods of string theory and theoretical black holes occupying extra dimensions could be used to describe some of these seemingly unrelated strongly coupled systems, including RHIC’s nearly perfect liquid. “Physicists were astounded,” the authors note. Although the mathematics is clear and well established, the physical reasons for the relationship are still a deep mystery.

When the LHC began its first heavy ion experiments in 2010 — at nearly 14 times higher energy than RHIC’s — they largely confirmed RHIC’s pioneering findings with evidence of a strongly coupled, low-viscosity liquid, albeit at a temperature about 30 percent higher than at RHIC. With a higher energy range, LHC offers a higher rate of rare particles, such as heavy (charm and bottom) quarks, and high- energy jets that can probe particular properties of the QGP system. RHIC can go to lower energies and collide a wide range of ions from protons, to copper, to gold, to uranium — and produce asymmetric collisions between two different kinds of ions. This flexibility at RHIC allows scientists to produce QGP under a wide variety of initial conditions, and thereby to distinguish intrinsic QGP properties from the influence of the initial conditions.

“The two facilities are truly complementary,” said Mueller, whose work on quantum chromodynamics (QCD), the theory that describes the interactions of quarks and gluons, helps guide experiments and interpret results at both facilities. “Both RHIC and the LHC are essential to advancing our understanding of the subatomic interactions that governed the early universe, and how those gave form to today’s matter as they coalesced into more ordinary forms.”

An essential part of the experimental and theoretical research path going forward will be a detailed exploration of the nuclear “phase diagram” — how quark matter evolves over a range of energies, temperatures, and densities. LHC will search the highest range of energies, where the matter produced contains quarks and antiquarks in almost complete balance. But all evidence to date from both colliders suggests that RHIC is in the energy “sweet spot” for exploring the transition from ordinary matter to QGP — analogous to the way an ordinary substance like water changes phases from ice to liquid water to gas.

“It’s extremely gratifying that our experimental program has succeeded so beautifully so far. The connections with other areas of physics are intriguing, and the results are turning out to be even more interesting than we expected,” Jacak said.
To hear about the latest findings and paths forward for this emerging field of physics, stay tuned for Quark Matter 2012. Reporters interested in attending Quark Matter can register by contacting Karen McNulty Walsh, kmcnulty@bnl.gov, 631 344-8350, or by going to this web link https://qm2012.bnl.gov/reg/mediaform.asp

Research at RHIC is funded primarily by the DOE Office of Science, and also by these agencies and organizations.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (http://www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (http://twitter.com/BrookhavenLab).

Media Relations Office | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>