Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Home Galaxy of a Fast Radio Burst Identified

05.01.2017

Astronomers have for the first time pinpointed the location of a "fast radio burst" - a type of short-duration radio flash of unknown astrophysical origin - and have used this to identify its home galaxy.

The galaxy, located over 3 billion light years away, is small, a so-called dwarf galaxy, and very different to our own Milky Way. Also, a persistent, compact radio source is close to the source of the bursts, which provides important insights into its astrophysical origin. The results from an international team, including Laura Spitler from the Max-Planck-Institute for Radio Astronomy in Bonn, Germany, appear today in three publications in Nature and the Astrophysical Journal Letters.


A number of radio telescopes were used within the European VLBI Network (EVN) to observe FRB 121102 (Artist’s impression).

Danielle Futselaar (www.artsource.nl)

Fast Radio Bursts (FRBs) are visible for only a fraction of a second, and have puzzled astronomers since their discovery a decade ago. Precise localization of an FRB requires radio telescopes separated by large distances, which allow high resolution images to be made when these telescopes are used in combination with each other. Such follow-up observations were made possible with the first discovery of a repeating source of fast radio bursts, FRB 121102, using the 305-m Arecibo Radio Telescope in Puerto Rico, USA.

Prior to this discovery, astronomers had only indirect evidence that fast radio bursts come from far outside our Milky Way galaxy, because poor localization has prevented them from uniquely identifying their galaxy of origin. The new finding is critical because it has also allowed astronomers to precisely measure the distance to the source, and hence how much energy it is producing.

The Very Large Array in New Mexico, USA detected a total of nine radio bursts from FRB 121102. This determined its sky position to a fraction of an arc second, over 200 times more precise than previous measurements. “Near this position, astronomers found both steady radio and optical sources, which pointed the way to the galaxy hosting the FRB,” says Shami Chatterjee from Cornell University, the first author of the paper in “Nature”.

The team was able to zoom-in on the radio sources with a factor of 10 more precision using the Arecibo Radio Telescope and the European VLBI Network (EVN), which links telescopes spread across the world. "With a bit of luck, we were able to detect bursts from FRB 121102 with the EVN and now we know that the origin of the bursts is right on top of the persistent radio source", says Benito Marcote from JIVE in the Netherlands. The 100-m radio telescope in Effelsberg, Germany, is the largest and most sensitive member of the EVN. "Bursts from this source are faint, and Effelsberg played a key role in making this discovery possible," says Laura Spitler, postdoctoral researcher at the Max-Planck-Institute for Radio Astronomy (MPIfR), who discovered FRB 121102.

The team used one of the world's largest optical telescopes, the 8-m Gemini North on Mauna Kea in Hawaii, to discover that the bursts originate from a host galaxy, and use its measured spectrum to obtain a redshift value which places the source at a whopping distance of over 3 billion light-years. "This gives us incontrovertible confirmation that this FRB originates very deep in extragalactic space,” says co-author Cees Bassa (ASTRON). Though the mystery of the FRB’s distance is now solved, astronomers have a new puzzle on their hands. The galaxy hosting the FRB is surprisingly small - a so-called dwarf galaxy.

The fact that FRB 121102 is hosted by a dwarf galaxy may be a vital clue to its physical nature. Such galaxies contain gas that is relatively pristine compared to that found in the Milky Way. "The conditions in this dwarf galaxy are such that it may be possible to form much more massive stars than in the Milky Way, and perhaps the source of the FRB bursts is from the collapsed remnant of such a star," suggests co-author Jason Hessels (ASTRON, University of Amsterdam).

Alternatively, astronomers are considering a very different hypothesis in which the FRB bursts are generated in the vicinity of a massive black hole that is swallowing surrounding gas, a so-called active galactic nucleus.

To try and differentiate between these two scenarios, astronomers are continuing to study FRB 121102 using the world's premier radio, optical, X-ray and gamma-ray telescopes. "For example, if we can find a periodicity to the arrival of the bursts, then we will have strong evidence that it originates from a rotating neutron star", says Laura Spitler.

Deciphering the origin of the FRBs will also depend on localizing more such sources, and astronomers are debating whether all FRBs detected to date are of a similar physical origin or whether there are multiple classes of this new cosmic phenomenon.


The 100-m Effelsberg Radio Telescope of the Max Planck Institute for Radio Astronomy is located in a valley approximately 40 kilometers southwest of Bonn, Germany.

The European VLBI Network (EVN) is a collaboration of the major radio astronomical institutes in Europe, Asia and South Africa and performs high angular resolution observations of cosmic radio sources.

The 305-m William E. Gordon Telescope of the Arecibo Observatory is located close to Arecibo in Puerto Rico, USA.

The Karl G. Jansky Very Large Array consists of 27 radio antennas in a Y-shaped configuration on the Plains of San Agustin fifty miles west of Socorro, New Mexico, USA. Each antenna is 25 meters (82 feet) in diameter.

Original Papers:

A direct localization of a fast radio burst and its host, S. Chatterjee et al., Nature, 05 January 2017.

The host galaxy and redshift of the repeating fast radio burst 121102, S. P. Tendulkar et al., The Astrophysical Journal Letters, 05 January 2017

The repeating fast radio burst 121102 as seen on milliarcsecond angular scales, B. Marcote et al., The Astrophysical Journal Letters, 05 January 2017

Local Contact:

Dr. Laura Spitler,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-314
E-mail: lspitler@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer
Head of Research Department “Fundamental Physics in Radio Astronomy”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2017/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
22.10.2019 | Tata Institute of Fundamental Research

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>