Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First hint of the Higgs boson particle

09.01.2012
Particle physicists at Mainz University are excited: 50 years after its prediction, the Higgs boson gradually takes shape

The answer to one of the most exciting questions in particle physics seems almost close enough to touch: Scientists at the Geneva research center CERN have observed first signs of the Higgs boson and now believe that they will soon be able to prove the existence of the elementary particle they have been trying so hard to isolate. It is the last missing piece in the puzzle of the Standard Model of particle physics to explain the structure of matter.

A discovery would be sensational news. "We indeed may have observed the first evidence of the Higgs particle, but it is still too early for a definitive statement," says Professor Dr. Volker Büscher from the Institute of Physics at Johannes Gutenberg University Mainz (JGU) in Germany. "And if this evidence turns out to be correct, the data now being analyzed will for the first time provide information about the mass of the Higgs boson," adds Professor Dr. Stefan Tapprogge. At Mainz University, some 50 physicists participate in CERN's research, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle.´

The particle was predicted almost 50 years ago and is named after the British physicist Peter Higgs. Since then, scientists all over the world have been searching for it. Its discovery would explain the origin of the masses of all other elementary particles. Just two years after its start, proton-proton collisions at the Large Hadron Collider (LHC) have now delivered the results which raise scientists' expectations. "At this point in time, we can make two statements," Büscher says. "First, if the Higgs boson actually has the characteristics it is assumed to have, then its mass must be between 115 and 131 gigaelectron volts – a much smaller window than just a year ago. Second, we have found a very intriguing excess of events, which could be the first direct evidence of a Higgs boson with a mass around 125 GeV." The experiments at CERN will continue next year. If the evidence is confirmed, the Higgs boson would be about 125 times as heavy as a proton.

In addition to this new data from the ATLAS detector, the second large particle detector at LHC, the Compact Muon Solenoid (CMS), has revealed similar indications. Confirmation would be a dream come true for the scientists working with Volker Büscher and Stefan Tapprogge. Many have dedicated their academic careers to the hunt for the Higgs particle – and are involved right now when things get really exciting. "This is a great moment for us all, and it would be wonderful if the observations were confirmed," says Tapprogge. Scientists are not yet speaking of a discovery, because it is still too early: The number of events observed is not yet large enough to statistically rule out a random effect. However, the fact that two independent experiments, ATLAS and CMS, both point in the same direction, creates excitement and raises hopes that this could indeed be the mysterious Higgs particle.

The Higgs boson was predicted in 1964. Within the theory, it would give mass to the other elementary particles of the Standard Model. According to the physicists, the entire universe is filled with the so-called Higgs field. Depending on how strong the individual elementary particles couple to the Higgs boson, they would have more or less mass. If the missing particle is actually discovered, this would not only confirm a model but would also mark the beginning of a new field of research. The LHC provides ideal conditions to study the Higgs field and the origin of mass in detail, especially with the even higher proton beam energy scheduled for 2014 onwards.

The researchers of the working group for Experimental Particle and Astroparticle Physics (ETAP) at Johannes Gutenberg University Mainz are involved in particular in the ATLAS experiment, one of two major experiments at the LHC. The ATLAS detector is 46 meters long, 25 meters high, and 25 meters wide. It is able to detect and precisely measure new particles produced during proton collisions. A total of approximately 3,000 researchers from all over the world are taking part in the ATLAS experiment.

The work of the ETAP group is integrated into the Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA), which has successfully made it into the final selection round of the German Federal Excellence Initiative.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14894.php
http://www.cern.de/
http://atlas.ch/

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>