Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Speed Camera Captures Dancing Droplets for Scientific ‘Photo Album,’ Study

08.08.2013
The splash from rain hitting a windowpane or printer ink hitting paper all comes down to tiny droplets hitting a surface, and what each of those droplets does.

Cornell University researchers have produced a high-resolution “photo album” of more than 30 shapes an oscillated drop of water can take. The results, a fundamental insight into how droplets behave, could have applications in everything from inkjet printing to microfluidics.



Susan Daniel, assistant professor of chemical and biomolecular engineering, led the study, to be published in Physical Review E, Aug. 9. First author Chun-Ti Chang, a Cornell graduate student, designed and performed the experiments, which involved a high-speed, high-resolution camera. Paul Steen, professor of chemical and biomolecular engineering, and his former student, Josh Bostwick, led the theoretical portion of the study.

Download the study, images and animations: https://cornell.box.com/droplets

“What is really special about this study is the high-quality imaging we were able to capture of these oscillating droplets,” Daniel said. “We created an imaging platform where we could look at the drop from the top, to enable us to see the characteristic shapes better than anyone has before.”

The imaging platform, which Chang has named the “Omniview” because of the different angles at which the droplet can be observed, consists of a glass slide, the droplet sitting on top, and a 50-micron-square metal mesh, like a window screen, underneath. A light is shined through the mesh holes, and deflection of the drop’s surface refracts the light, which is seen as a deformation of the mesh and captured by a high-speed camera.

The researchers mechanically oscillated the drops at varying frequencies, and observed and recorded their movements. The oscillation can be likened to when a violin string is plucked; certain natural frequencies correspond to a given length of string, the same way certain frequencies correspond to the shape of a drop of a specific size.

The researchers created a detailed table of droplet shapes according to frequency, as well as comparing these results to previous theoretical predictions involving the dynamics of oscillating droplets. Classical theories don’t capture the dynamics entirely, but new predictions, made by collaborators Steen and Bostwick, take into account the physical effect of the solid substrate in contact with the droplet and match the images in the photo album.

The researchers also observed that some of the droplets take on multiple shapes when vibrated with a single driving frequency – akin to physicists observing two different energy states simultaneously in an excited molecule.

“Without the high-speed imaging, we wouldn’t have been able to see the drops exhibiting these kinds of mixed behaviors,” Daniel said.

The detailed, clear table of oscillating drop modes should lend insight into further fundamental studies, as well as a host of applications, Daniel said. For example, NASA is interested in understanding how droplets on surfaces move in low gravity. And in high-resolution printing, the spread of a drop as it touches a surface will dictate image resolution. The surface chemistry of the roller, printer and ink will have profound effects on the technology.

The study, “Substrate Constraint Modifies the Rayleigh Spectrum of Vibrating Sessile Drops,” was supported NASA, the National Science Foundation and Xerox Corp.

Contact Syl Kacapyr for information about Cornell's TV and radio studios.

Syl Kacapyr | Newswise
Further information:
http://www.cornell.edu
http://cornell.box.com/droplets

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>