Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High resolution without particle accelerator

07.08.2017

A first for physics – University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale.

A visit to the optometrist often involves optical coherence tomography. This imaging process uses infrared radiation to penetrate the layers of the retina and examine it more closely in three dimensions, without having to touch the eye at all. This allows eye specialists to diagnose diseases such as glaucoma without any physical intervention.


Silvio Fuchs in a laboratory of the Institute of Optics and Quantum Electronics of the Friedrich Schiller University Jena.

Photo: Jan-Peter Kasper/FSU Jena

However, this method would have even greater potential for science if a shorter radiation wavelength were used, thus allowing a higher resolution of the image. Physicists at Friedrich Schiller University Jena (Germany) have now achieved just that and they have reported their research findings in the latest issue of the specialist journal “Optica” (DOI: 10.1364/OPTICA.4.000903).

First XUV coherence tomography at laboratory scale

For the first time, the University physicists used extreme ultraviolet radiation (XUV) for this process, which was generated in their own laboratory, and they were thus able to perform the first XUV coherence tomography at laboratory scale. This radiation has a wavelength of between 20 and 40 nanometres – from which it is therefore just a small step to the X-ray range.

“Large-scale equipment, that is to say particle accelerators such as the German Elektronen-Synchotron in Hamburg, are usually necessary for generating XUV radiation,” says Silvio Fuchs of the Institute of Optics and Quantum Electronics of the Jena University.

“This makes such a research method very complex and costly, and only available to a few researchers.” The physicists from Jena have already demonstrated this method at large research facilities, but they have now found a possibility for applying it at a smaller scale.

In this approach, they focus an ultrashort, very intense infrared laser in a noble gas, for example argon or neon. “The electrons in the gas are accelerated by means of an ionisation process,” explains Fuchs. “They then emit the XUV radiation.”

It is true that this method is very inefficient, as only a millionth part of the laser radiation is actually transformed from infrared into the extreme ultraviolet range, but this loss can be offset by the use of very powerful laser sources. “It’s a simple calculation: the more we put in, the more we get out,” adds Fuchs.

Strong image contrasts are produced

The advantage of XUV coherence tomography is that, in addition to the very high resolution, the radiation interacts strongly with the sample, because differrent substances react differently to light. Some absorb more light and others less. This produces strong contrasts in the images, which provide the researchers with important information, for example regarding the material composition of the object being examined.

“For example, we have created three-dimensional images of silicon chips, in a non-destructive way, on which we can distinguish the substrate clearly from structures consisting of other materials,” adds Silvio Fuchs. “If this procedure were applied in biology – for investigating cells, for example, which is one of our aims – it would not be necessary to colour samples, as is normal practice in other high-resolution microscopy methods. Elements such as carbon, oxygen and nitrogen would themselves provide the contrast.”

Before that is possible, however, the physicists of the University of Jena still have some work to do. “With the light sources we have at the moment, we can achieve a depth resolution down to 24 nanometres. Although this is sufficient for producing images of small structures, for example in semiconductors, the structure sizes of current chips are in some cases already smaller.

However, with new, even more powerful lasers, it should be possible in future to achieve a depth resolution of as little as three nanometres with this method,“ notes Fuchs. “We have shown in principle that it is possible to use this method at laboratory scale.”

The long-term aim could ultimately be to develop a cost-effective and user-friendly device combining the laser with the microscope, which would enable the semiconductor industry or biological laboratories to use this imaging technique with ease.

Original publication:
Silvio Fuchs et al.: „Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source“, Optica (2017) Vol. 4, Issue 8, 903-906, https://doi.org/10.1364/OPTICA.4.000903

Contact:
Silvio Fuchs
Institute of Optics and Quantum Electronics
Friedrich Schiller University Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Phone: +49 (0)3641 / 947615
Email: silvio.fuchs[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>