Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality boron nitride grown at atmospheric pressure

22.04.2020

Graphene Flagship researchers produce large and very high-quality crystals at room temperature.

Graphene Flagship researchers at RWTH Aachen University, Germany and ONERA-CNRS, France, in collaboration with researchers at the Peter Grunberg Institute, Germany, the University of Versailles, France, and Kansas State University, US, have reported a significant step forward in growing monoisotopic hexagonal boron nitride at atmospheric pressure for the production of large and very high-quality crystals.


Graphene Flagship researchers reported a significant step forward in growing monoisotopic hexagonal boron nitride at atmospheric pressure for the production of large and very high-quality crystals.

Credit: Graphene Flagship

Hexagonal boron nitride (hBN) is the unsung hero of graphene-based devices. Much progress over the last decade was enabled by the realisation that 'sandwiching' graphene between two hBN crystals can significantly improve the quality and performance of the resulting devices.

This finding paved the way to a series of exciting developments, including the discoveries of exotic effects such as magic-angle superconductivity and proof-of-concept demonstrations of sensors with unrivalled sensitivity.

Until now, the most widely used hBN crystals came from the National Institute of Material Science in Tsukuba, Japan. These crystals are grown using a process at high temperatures (over 1500°C) and extremely high pressures (over 40,000 times atmospheric pressure).

"The pioneering contribution by the Japanase researchers Taniguchi and Watanabe to graphene research is invaluable", begins Christoph Stampfer from Graphene Flagship Partner RWTH Aachen University, Germany. "They provide hundreds of labs around the world with ultra-pure hBN at no charge. Without their contribution, a lot of what we are doing today would not be possible."

However, this hBN growth method comes with some limitations. Among them is the small crystal size, which is limited to a few 100 μm, and the complexity of the growth process. This is suitable for fundamental research, but beyond this, a method with better scalability is needed.

Now Graphene Flagship researchers tested hBN crystals grown with a new methodology that works at atmospheric pressure, developed by a team of researchers led by James Edgar at Kansas State University, US. This new approach shows great promise for more demanding research and production.

"I was very excited when Edgar proposed that we test the quality of his hBN", says Stampfer. "His growth method could be suitable for large-scale production". The method for growing hBN at atmospheric pressure is indeed much simpler and cheaper than previous alternatives and allows for the isotopic concentration to be controlled.

"The hBN crystals we received were the largest I have ever seen, and they were all based either on isotopically pure boron-10 or boron-11" says Jens Sonntag, a graduate student at Graphene Flagship Partner RWTH Aachen University. Sonntag tested the quality of the flakes first using confocal Raman spectroscopy. In addition, Graphene Flagship partners in ONERA-CNRS, France, led by Annick Loiseau, carried out advanced luminescence measurements. Both measurements indicated high isotope purity and high crystal quality.

However, the strongest evidence for the high hBN qualitycame from transport measurements performed on devices containing graphene sandwiched between monoisotopic hBN. They showed equivalent performance to a state-of-the-art device based on hBN from Japan, with better performance in some areas.

"This is a clear indication of the extremely high quality of these hBN crystals," says Stampfer. "This is great news for the whole graphene community, because it shows that it is, in principle, possible to produce high quality hBN on a large scale, bringing us one step closer to real applications based on high-performance graphene electronics and optoelectronics. Furthermore, the possibility of controlling the isotopic concentration of the crystals opens the door to experiments that were not possible before."

Mar García-Hernández, Work Package Leader for Enabling Materials, adds: "Free-standing graphene, being the thinnest material known, exhibits a large surface area and, therefore, is extremely sensitive to its surrounding environment, which, in turn, results in substantial degradation of its exceptional properties. However, there is a clear strategy to avoid these deleterious effects: encapsulating graphene between two protective layers."

García-Hernández continues: "When graphene is encapsulated by hBN, it reveals its intrinsic properties. This makes hBN an essential material to integrate graphene into current technologies and demonstrates the importance of devising new scalable synthetic routes for large-scale hBN production. This work not only provides a new and simpler path to produce high-quality hBN crystals on a large scale, but it also enables the production of monoisotopic material, which further reduces the degradation of graphene when encapsulated by two layers."

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel, adds: "This is a nice example of collaboration between the EU and the US, which we fostered via numerous bilateral workshops. Devising alternative approaches to produce high-quality hBN crystals is crucial to enable us to exploit the ultimate properties of graphene in opto-electronics applications. Furthermore, this work will lead to significant progress in fundamental research."

Media Contact

Dr Fernando Gomollon Bel
press@graphene-flagship.eu
44-122-376-3291

 @GrapheneCA

http://graphene-flagship.eu 

Dr Fernando Gomollon Bel | EurekAlert!
Further information:
https://graphene-flagship.eu/news/Pages/High-quality-boron-nitride-grown-at-atmospheric-pressure.aspx
http://dx.doi.org/10.1088/2053-1583/ab89e5

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
01.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>