Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance solar cells: physicists from Halle grow stable perovskite layers

06.11.2018

Crystalline perovskite cells are the key to cutting-edge thin-film solar cells. Although they already achieve very high levels of efficiency in the laboratory, commercial applications are hampered by the fact that the material is still too unstable. Furthermore, there is no reliable industrial production process for perovskites. In a new study published in the "Journal of Physical Chemistry Letters", physicists at Martin Luther University Halle-Wittenberg (MLU) present an approach that could solve this problem. They also describe in detail how perovskites form and decay. The results could help produce high-performance solar cells in the future.

Perovskites are currently receiving a great deal of attention in the solar industry. In 2009, researchers were first able to prove that organic-inorganic compounds with a special perovskite crystal structure are good absorbers that can effectively convert sunlight into electricity. Within just a few years, the efficiency of perovskite solar cells was increased to well over 20 percent in the laboratory.


"Although modern, monocrystalline silicon solar cells achieve slightly better values, they are much harder to manufacture and they have been under development for a much longer time," says Dr Paul Pistor, a physicist at MLU and lead author of the study. Currently, however, there are no market-ready perovskite-based solar cells as there is no established process for the large-scale production of perovskites.

In addition, the thin crystal layers are rather unstable and sensitive to environmental influences. "High temperatures or humidity cause the perovskites to decompose and lose their ability to convert sunlight into electricity," says Pistor. Yet, solar cells have to withstand elevated temperatures because they are permanently exposed to the sun.

In their study, the physicists from Halle investigated a special, inorganic perovskite consisting of caesium, lead and bromine or iodine. Instead of using the usual wet-chemical processes to produce the perovskites, they deployed a process that is already widely used in industry to produce thin layers and a range of components.

In a vacuum chamber, precursor materials are heated up until they evaporate. Then, the perovskite condenses on a colder glass substrate and a thin crystalline layer grows. "The advantage of this method is that every part of the process can be very well controlled. This way, the layers grow very homogenous and the thickness and composition of the crystals can be easily adjusted," explains Pistor.

His team was thus able to produce perovskite layers based on caesium that didn’t decompose until they reached temperatures of 360 degrees Celsius. Using cutting-edge X-ray analysis, the researchers also analysed the growth and decay processes of the crystals in real time.

The results provide important insights into the underlying properties of perovskites and point to a process that may be suitable for the industrial realisation of modern perovskite-based solar cell technology.

Originalpublikation:

Burwig T., Fränzel W., Pistor P., Crystal Phases and Thermal Stability of Co-evaporated CsPbX3 (X = I, Br) Thin Films, Journal of Physical Chemistry Letters (2018), doi: 10.1021/acs.jpclett.8b02059

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Physics and Astronomy:

nachricht Journey to the center of Mars
20.02.2020 | Tohoku University

nachricht Laser writing enables practical flat optics and data storage in glass
20.02.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>