Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance solar cells: physicists from Halle grow stable perovskite layers

06.11.2018

Crystalline perovskite cells are the key to cutting-edge thin-film solar cells. Although they already achieve very high levels of efficiency in the laboratory, commercial applications are hampered by the fact that the material is still too unstable. Furthermore, there is no reliable industrial production process for perovskites. In a new study published in the "Journal of Physical Chemistry Letters", physicists at Martin Luther University Halle-Wittenberg (MLU) present an approach that could solve this problem. They also describe in detail how perovskites form and decay. The results could help produce high-performance solar cells in the future.

Perovskites are currently receiving a great deal of attention in the solar industry. In 2009, researchers were first able to prove that organic-inorganic compounds with a special perovskite crystal structure are good absorbers that can effectively convert sunlight into electricity. Within just a few years, the efficiency of perovskite solar cells was increased to well over 20 percent in the laboratory.


"Although modern, monocrystalline silicon solar cells achieve slightly better values, they are much harder to manufacture and they have been under development for a much longer time," says Dr Paul Pistor, a physicist at MLU and lead author of the study. Currently, however, there are no market-ready perovskite-based solar cells as there is no established process for the large-scale production of perovskites.

In addition, the thin crystal layers are rather unstable and sensitive to environmental influences. "High temperatures or humidity cause the perovskites to decompose and lose their ability to convert sunlight into electricity," says Pistor. Yet, solar cells have to withstand elevated temperatures because they are permanently exposed to the sun.

In their study, the physicists from Halle investigated a special, inorganic perovskite consisting of caesium, lead and bromine or iodine. Instead of using the usual wet-chemical processes to produce the perovskites, they deployed a process that is already widely used in industry to produce thin layers and a range of components.

In a vacuum chamber, precursor materials are heated up until they evaporate. Then, the perovskite condenses on a colder glass substrate and a thin crystalline layer grows. "The advantage of this method is that every part of the process can be very well controlled. This way, the layers grow very homogenous and the thickness and composition of the crystals can be easily adjusted," explains Pistor.

His team was thus able to produce perovskite layers based on caesium that didn’t decompose until they reached temperatures of 360 degrees Celsius. Using cutting-edge X-ray analysis, the researchers also analysed the growth and decay processes of the crystals in real time.

The results provide important insights into the underlying properties of perovskites and point to a process that may be suitable for the industrial realisation of modern perovskite-based solar cell technology.

Originalpublikation:

Burwig T., Fränzel W., Pistor P., Crystal Phases and Thermal Stability of Co-evaporated CsPbX3 (X = I, Br) Thin Films, Journal of Physical Chemistry Letters (2018), doi: 10.1021/acs.jpclett.8b02059

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Physics and Astronomy:

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>