Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-energy astrophysics puzzle

24.04.2013
Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of a blazar known as PKS 1424+240 show that it is the most-distant known source of very high-energy gamma rays. But its emission spectrum appears highly unusual.

A team including Carnegie's Michele Fumagalli used data from the Hubble Space Telescope to set a lower limit for the blazar's redshift (z ¡Ý 0.6035). An object's redshift value is a measurement of how much the wavelength of the light from it that reaches Earth is stretched by the expansion of the Universe.

Thus, it reveals the object's age and distance. This blazar's redshift corresponds to a distance of at least 7.4 billion light-years. Their work will be published by The Astrophysical Journal and is available online.

Over such a great distance, a substantial proportion of the gamma rays should be absorbed by the extragalactic background light, but calculations that account for the expected absorption yield an unexpected emission spectrum for the blazar.

"We're seeing an extraordinarily bright source that does not display the characteristic emission expected from a very high-energy blazar," said lead author Amy Furniss, University of California Santa Cruz.

The findings may indicate something new about the emission mechanisms of blazars, the extragalactic background light, or the propagation of gamma-ray photons over long distances. It was not thought that such high-energy gamma-ray sources could be seen at such great distances. The research should allow scientists to better understand cosmological models that predict the extragalactic background light.

The extragalactic background light (EBL) is the diffuse radiation from all stars and galaxies, a dim but pervasive glow that fills the universe. When a high-energy gamma-ray photon collides with a lower-energy EBL photon, they annihilate and create an electron-positron pair. The farther gamma rays have to travel, the more likely they are to be absorbed by this mechanism. This limits the distance to which sources of very high-energy gamma rays can be detected.

Measuring the EBL directly is extremely difficult because there are so many bright sources of light in our immediate neighborhood. In addition to estimates based on cosmological models, astronomers have used galaxy counts to set a lower limit for the EBL. Using a model close to this lower limit to calculate the expected absorption of very high-energy gamma rays from PKS 1424+240, the team derived an intrinsic gamma-ray emission spectrum for the blazar. The results, however, deviate from the expected emission based on current blazar models, which are thought to result from a relativistic jet of particles powered by matter falling onto a supermassive black hole at the center of the host galaxy.

Gamma rays from PKS 1424+240 were first detected by the Fermi Gamma-ray Space Telescope and subsequently by the ground-based instrument VERITAS (Very Energetic Radiation Imaging Telescope Array System), which is sensitive to gamma-rays in the very high-energy (VHE) band from about 100 GeV to more than 10 TeV. To determine the redshift of the blazar--a measure of how much the light from an object has been stretched to longer wavelengths by the expansion of the universe--the researchers used archival data obtained by the Hubble Space Telescope.

The other co-authors on the paper are David Williams, J. Xavier Prochaska, Joel Primack, also of UCSC; Charles Danforth and John Stocke of the University of Colorado; Meg Urry of Yale University; Alex Filippenko of UC Berkeley; and William Neely of the NF/ Observatory.

Support was provided by NASA awarded through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA; the National Science Foundation award PHY-0970134; NASA grants NNX08AC146 and NAS5-98043 to the University of Colorado at Boulder ; NASA/Fermi grants GO-31089 and NNX12AF12GA; NSF grant AST-1211916; the Christopher R. Redlich Fund; the TABASGO Foundation; and NASA Hubble Fellowship grant HF-51305.01-A.

KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation and the TABASGO Foundation.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Michele Fumagalli | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>