Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HI4PI: A new all-sky survey of neutral hydrogen

20.10.2016

Two of the world's largest fully steerable radio telescopes, the 100-m dish at Effelsberg/Germany and the 64-m Parkes/Australia telescope, mapped the detailed structure of neutral hydrogen across the Northern and Southern hemispheres. Today, the complete survey, HI4PI, is released to the scientific community. It discloses a wealth of fine details of the large scale structure of the Milky Way's gas distribution. HI4PI is the product of a joined effort of astronomers of many countries and will be a mile stone for the decades to come.

Atomic hydrogen is the most abundant element in space. It is the prime constituent in almost all astronomical objects such as stars, galaxies, and even clusters of galaxies. Hydrogen consists of a single proton and is the simplest element in space. It was already formed during the big bang nucleosynthesis. If the proton is combined with an electron, it is called neutral atomic hydrogen, abbreviated as HI.


The entire sky in the light of neutral atomic hydrogen (HI) as seen by the Parkes and Effelsberg radio telescope with the Milky Way in the middle. .

HI4PI Collaboration


Two of the largest radio telescopes in the world, utilized for HI4PI, the high-resolution map of the full sky in the light of neutral hydrogen: Effelsberg (100-m, left) and Parkes (64-m, right).

Norbert Junkes (left image), Shaun Amy (right image).

In addition to the well-known hydrogen spectral lines at visual wavelengths, extremely faint hydrogen line emission can be observed at radio wavelengths, the so-called 21-cm line. Even though the emitted energy is tiny, the sheer amount of hydrogen in space makes the 21-cm line emission observable in nearly all galactic environments, even far beyond the stellar population of galaxies.

In 1951 three independent research groups from the United States, the Netherlands and Australia announced the first detection of HI 21-cm line emission. Now, 65 years later, an international collaboration of scientists from all over the world announced the release of a new full-sky 21-cm spectral line survey, called HI4PI.

HI4PI is an acronym for HI across the whole sky (the surface area of the full sphere corresponding to 4*PI steradian). The HI4PI collaboration, led by a German team from Bonn University and Max Planck Institute for Radio Astronomy (MPIfR), is publishing the results in the current issue of "Astronomy and Astrophysics".

With modern radio telescopes, HI is fairly easy to detect towards any direction on the sky. Mapping the whole sky is nevertheless time consuming and costly in terms of manual labor. To map the whole sky demanded more than a million individual observations with two of the World's largest radio telescopes, the 100-m telescope at Effelsberg, Germany, and the Parkes 64-m telescope in Australia. In total, dozens of Tera-bytes of raw data have been recorded. The raw data sets were processed by Astronomers in Bonn, yielding the final data product.

“Besides a careful calibration of the data, we also had to remove man-made noise from the data. This so-called radio frequency interference (RFI) is, for example, produced by telecommunication and broadcast stations, or military RADAR and pollutes the faint emission of the astronomical sources”, explains Benjamin Winkel from MPIfR, responsible for the data acquisition and processing in the HI4PI collaboration. “The computational effort for the data processing was huge, adding to the thousands of hours of observations thousands of hours of computing time.”

The new observations were only possible because the technical equipment at radio telescopes was hugely improved in the last decade. On the one hand, new receiving systems utilizing multi-pixel feeds increased the mapping speed by an order of magnitude. On the other hand, extremely capable spectrometers based on state-of-the-art digital processors became available. Previously, state-of-the-art HI data came from the Leiden-Argentine-Bonn survey (LAB), which is based on observations with 30-m class telescopes. The new HI4PI survey has twice the sensitivity and four times better angular resolution compared to the LAB survey.

Because HI is ubiquitous in the universe, HI4PI will serve as a major resource for researchers working with observational data at all wavelengths. As an example, X-ray and Gamma ray photons are partly absorbed, scattered or re-emitted at other wavelengths by Milky Way hydrogen during their journey from outer space to our telescopes. Therefore, the distribution of HI in the Milky Way significantly alters the incoming signal observed by high-energy telescopes. The HI4PI data set allows the scientists to correct for these disturbing effects, cleaning our window to the distant universe.

Also, for astrophysicists studying the Milky Way gas distribution itself, HI4PI will be a valuable new resource. Owing to the increased sensitivity and angular resolution much finer structures of the interstellar medium are now revealed. “Many studies that use pre-release data of the HI4PI survey have already been published in the last years, providing a wealth of new insights and amazing scientific results”, says Peter Kalberla from Bonn University, the leading senior scientist in the project.

“HI4PI sets a benchmark for the decades to come”, concludes Jürgen Kerp, also from Bonn University, the project coordinator and principal investigator of the Effelsberg survey. “Although upcoming new instruments such as the Square Kilometer Array (SKA) will push sensitivity and angular resolution to new realms, being radio interferometers they are by design insensitive to diffusely distributed HI gas. The HI4PI will be the prime resource to add this missing information to the SKA data.”

HI4PI data will be freely accessible on request from interested persons all over the world via CDS, the Strasbourg data center (after the embargo expires).


The team comprises the HI4PI Collaboration: N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, and B. Winkel, moreover J. Bailin, M. R. Calabretta, L. Dedes, H. A. Ford, B. K. Gibson, U. Haud, S. Janowiecki, P. M.W. Kalberla, F. J. Lockman, N. M. McClure-Griffiths, T. Murphy, H. Nakanishi, D. J. Pisano, and L. Staveley-Smith.

Original Paper:

HI4PI collaboration: HI4PI: A full-sky HI survey based on EBHIS and GASS, 2016, Astronomy & Astrophysics, Online Publication October 20 (DOI: 10.1051/0004-6361/201629178).
URL: www.aanda.org/10.1051/0004-6361/201629178 (after the embargo expires)

Contact:

Priv.-Doz. Dr. Jürgen Kerp,
Argelander-Institut für Astronomie,
Universität Bonn.
Fon: +49 228 73-3667
E-mail: jkerp@astro.uni-bonn.de

Dr. Benjamin Winkel,
Radio-Observatorium Effelsberg,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 2257 301-167
E-mail: bwinkel@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/13

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>