Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ground-based detection of light from transiting exoplanets

15.01.2009
Transiting exoplanets are routinely detected when they pass in front of their parent star as viewed from the Earth, which only happens by chance.

The transit event causes a small drop in the observed starlight, which can then be detected. Fifty-five exoplanets have been detected this way since the observation of the first transiting planet HD 209458 b in 1999.

When the planet revolves around its star or when it goes behind, the light coming from the system also varies, though the resulting smaller modulation is much harder to detect. This is mostly due to the small amount of light emitted by these exoplanets which are believed to be as dark as coal and reflect little of the incoming starlight. Fortunately, some of these planets are very hot, thus emitting light, mostly at infrared wavelengths.

Up to now, detections of this kind have only been made using the Spitzer infrared space telescope. This week, Astronomy & Astrophysics is publishing the two first ground-based detections of thermal emission from transiting, hot-Jupiter exoplanets, from two independent teams of astronomers that used different approaches.

One team includes Ernst De Mooij and Ignas Snellen (University of Leiden, Netherlands) who used the William Hershel 4.2 meter telescope in La Palma (Canary Islands, Spain) to observe the star TrES-3 and its planet TrES-3b. To be able to detect the light coming from the planet, they observed the planet exactly at the time when it passes behind the star. They observed the event at infrared wavelengths, where the planet is at its brightest compared to the star (even if the planet is still much fainter than the star!) As they detected the light coming from the planet, they estimated the temperature of its atmosphere to about 2000 Kelvins. This indicates that the day side of the planet is extremely hot.

The other team, involving David Sing (IAP, France) and Mercedes Lopez-Morales (Carnegie Institution of Washington, USA), had a different approach. They looked at a much fainter star and its planet, OGLE-TR-56b. This planet is one of the most irradiated planets known so far, both because the planet is very close to the star and because the star is very hot. To detect the slight modulation in light that occurs when the planet passes behind its star, they used the 8 meter Very Large Telescope (ESO, Chile) and the 6.5 meter Magellan Telescopes (Las Campanas, Chile) and were able to observe this event at visible wavelengths. Indeed, the planet OGLE-TR-56b is heated so much by its star that it emits detectable amounts of light in the visible wavelengths, and not only in the infrared as TrES-3b does. Hence, Sing and Lopez-Morales measured the record-high temperature of a planetary atmosphere: 2700 Kelvins. As in the case of TrES-3b, such a high day-side temperature indicates that winds cannot redistribute the heat efficiently from the day side to the night side.

These two independent results are very interesting for astronomers and planetary scientists because they allow a direct probe of the temperature of these planetary atmospheres, and because they show that such measurements can be made from ground-based observatories, and not only when using space telescopes.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/355/42/lang,en/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>